Experimental and Numerical Study on the Fretting Fatigue Mechanism of the V Type Engine

Author(s):  
Xin Li ◽  
Zhengxing Zuo ◽  
Wenjie Qin

Fretting fatigue is one of the typical failure forms of engine block. The aim of this study is to investigate the fretting fatigue mechanism of the V type engine and guide engine design. An experiential system was developed to simulate fretting fatigue failure under typical engine working condition. And a submodel was used in the finite element calculation to analyze contact status and stress distribution of the structural model. Through the fretting fatigue experimental observations and finite element analysis, it can be concluded that the additional rotate torque caused by bearing load and the bolt pretension load are the two main factors which affect the fretting fatigue mechanism of the V type engine. Appropriate increasing of the bolt pretension load and using extended skirt block with cross-bolted main bearings design will restrain the oscillation of the main bearing cap can be beneficial to fretting fatigue lives of the engine block.

2018 ◽  
Vol 55 (4) ◽  
pp. 666-675
Author(s):  
Mihaela Tanase ◽  
Dan Florin Nitoi ◽  
Marina Melescanu Imre ◽  
Dorin Ionescu ◽  
Laura Raducu ◽  
...  

The purpose of this study was to determinate , using the Finite Element Analysis Method, the mechanical stress in a solid body , temporary molar restored with the self-curing GC material. The originality of our study consisted in using an accurate structural model and applying a concentrated force and a uniformly distributed pressure. Molar structure was meshed in a Solid Type 45 and the output data were obtained using the ANSYS software. The practical predictions can be made about the behavior of different restorations materials.


2021 ◽  
pp. 136943322110015
Author(s):  
Rana Al-Dujele ◽  
Katherine Ann Cashell

This paper is concerned with the behaviour of concrete-filled tubular flange girders (CFTFGs) under the combination of bending and tensile axial force. CFTFG is a relatively new structural solution comprising a steel beam in which the compression flange plate is replaced with a concrete-filled hollow section to create an efficient and effective load-carrying solution. These members have very high torsional stiffness and lateral torsional buckling strength in comparison with conventional steel I-girders of similar depth, width and steel weight and are there-fore capable of carrying very heavy loads over long spans. Current design codes do not explicitly include guidance for the design of these members, which are asymmetric in nature under the combined effects of tension and bending. The current paper presents a numerical study into the behaviour of CFTFGs under the combined effects of positive bending and axial tension. The study includes different loading combinations and the associated failure modes are identified and discussed. To facilitate this study, a finite element (FE) model is developed using the ABAQUS software which is capable of capturing both the geometric and material nonlinearities of the behaviour. Based on the results of finite element analysis, the moment–axial force interaction relationship is presented and a simplified equation is proposed for the design of CFTFGs under combined bending and tensile axial force.


Author(s):  
Peter Carter ◽  
D. L. Marriott ◽  
M. J. Swindeman

This paper examines techniques for the evaluation of two kinds of structural imperfection, namely bulging subject to internal pressure, and out-of-round imperfections subject to external pressure, with and without creep. Comparisons between comprehensive finite element analysis and API 579 Level 2 techniques are made. It is recommended that structural, as opposed to material, failures such as these should be assessed with a structural model that explicitly represents the defect.


2014 ◽  
Vol 85 (5) ◽  
pp. 055106 ◽  
Author(s):  
Xin Li ◽  
Zhengxing Zuo ◽  
Wenjie Qin

2021 ◽  
pp. 136943322110499
Author(s):  
Feleb Matti ◽  
Fidelis Mashiri

This paper investigates the behaviour of square hollow section (SHS) T-joints under static axial tension for the determination of stress concentration factors (SCFs) at the hot spot locations. Five empty and corresponding concrete-filled SHS-SHS T-joint connections were tested experimentally and numerically. The experimental investigation was carried out by attaching strain gauges onto the SHS-SHS T-joint specimens. The numerical study was then conducted by developing three-dimensional finite element (FE) T-joint models using ABAQUS finite element analysis software for capturing the distribution of the SCFs at the hot spot locations. The results showed that there is a good agreement between the experimental and numerical SCFs. A series of formulae for the prediction of SCF in concrete-filled SHS T-joints under tension were proposed, and good agreement was achieved between the maximum SCFs in SHS T-joints calculated from FE T-joint models and those from the predicted formulae.


2017 ◽  
Vol 2017 ◽  
pp. 1-19 ◽  
Author(s):  
Roman Kvasov ◽  
Lev Steinberg

This paper presents the numerical study of Cosserat elastic plate deformation based on the parametric theory of Cosserat plates, recently developed by the authors. The numerical results are obtained using the Finite Element Method used to solve the parametric system of 9 kinematic equations. We discuss the existence and uniqueness of the weak solution and the convergence of the proposed FEM. The Finite Element analysis of clamped Cosserat plates of different shapes under different loads is provided. We present the numerical validation of the proposed FEM by estimating the order of convergence, when comparing the main kinematic variables with an analytical solution. We also consider the numerical analysis of plates with circular holes. We show that the stress concentration factor around the hole is less than the classical value, and smaller holes exhibit less stress concentration as would be expected on the basis of the classical elasticity.


Sign in / Sign up

Export Citation Format

Share Document