Node-Dependent Kinematic One-Dimensional Models for the Analysis of Rotating Structures

Author(s):  
Erasmo Carrera ◽  
Matteo Filippi ◽  
Enrico Zappino

In this paper, the dynamics of rotating structures has been studied using a refined one-dimensional finite element model with a node-dependent kinematics. The present approach has been used to derive models where refined theories are used only in the region in which they are required and classical models elsewhere. This produces a reduction in the computational cost without a reduction in the accuracy of the analysis. The equations of motion have been derived in a three-dimensional fashion and they include all contributions due to the rotational speed, namely the gyroscopic, the spin softening, and the centrifugal stiffening terms. Classical and higher-order refined models have been established with the Carrera Unified Formulation. The numerical model has been assessed and then a number of applications to thin-walled structures have been proposed. The current methodology appears very effective when rotors are constituted of components with different deformability such as compact shafts and disks. The results have been compared with those obtained from uniform kinematic models and convergence analyses have been performed. The results show the efficiency of the proposed model.

Author(s):  
Erasmo Carrera ◽  
Enrico Zappino

One-dimensional models are widely used in mechanical design. Classical models, Euler-Bernoulli or Timoshenko, ensure a low computational cost but are limited by their assumptions, many refined models were proposed to overcome these limitations and extend one-dimensional models at the analysis of complex geometries or advanced materials. In this work a new approach is proposed to couple different kinematic models. A new finite element is introduced in order to connect one-dimensional elements with different displacement fields. The model is derived in the frameworks of the Carrera Unified Formulation (CUF), therefore the formulation can be written in terms of fundamental nuclei. The results show that the use variable kinematic models allows the computational costs to be reduced without reduce the accuracy, moreover, refined-one dimensional models can be used in the analysis of complex structures.


1988 ◽  
Vol 34 (117) ◽  
pp. 236-241
Author(s):  
D. F. E. Stolle

AbstractA description of the reduction of two-dimensional equilibrium equations to one-dimensional form via the Kantorovich method is given. An appropriate interpolation function is obtained by relating basal shear stress to sliding velocity and integrating the constitutive model through the depth of ice. An example is presented which demonstrates the ability of the numerical model to effect solutions which are in good agreement with those obtained via full two-dimensional finite-element models; however, at a small fraction of computational and data input efforts. The technique described for the reduction of the equilibrium equations can also be used to convert three-dimensional stress equilibrium to two-dimensional form.


1988 ◽  
Vol 34 (117) ◽  
pp. 236-241
Author(s):  
D. F. E. Stolle

AbstractA description of the reduction of two-dimensional equilibrium equations to one-dimensional form via the Kantorovich method is given. An appropriate interpolation function is obtained by relating basal shear stress to sliding velocity and integrating the constitutive model through the depth of ice. An example is presented which demonstrates the ability of the numerical model to effect solutions which are in good agreement with those obtained via full two-dimensional finite-element models; however, at a small fraction of computational and data input efforts. The technique described for the reduction of the equilibrium equations can also be used to convert three-dimensional stress equilibrium to two-dimensional form.


2007 ◽  
Vol 35 (3) ◽  
pp. 226-238 ◽  
Author(s):  
K. M. Jeong ◽  
K. W. Kim ◽  
H. G. Beom ◽  
J. U. Park

Abstract The effects of variations in stiffness and geometry on the nonuniformity of tires are investigated by using the finite element analysis. In order to evaluate tire uniformity, a three-dimensional finite element model of the tire with imperfections is developed. This paper considers how imperfections, such as variations in stiffness or geometry and run-out, contribute to detrimental effects on tire nonuniformity. It is found that the radial force variation of a tire with imperfections depends strongly on the geometrical variations of the tire.


2021 ◽  
Vol 11 (5) ◽  
pp. 2225
Author(s):  
Fu Wang ◽  
Guijun Shi ◽  
Wenbo Zhai ◽  
Bin Li ◽  
Chao Zhang ◽  
...  

The steel assembled support structure of a foundation pit can be assembled easily with high strength and recycling value. Steel’s performance is significantly affected by the surrounding temperature due to its temperature sensitivity. Here, a full-scale experiment was conducted to study the influence of temperature on the internal force and deformation of supporting structures, and a three-dimensional finite element model was established for comparative analysis. The test results showed that under the temperature effect, the deformation of the central retaining pile was composed of rigid rotation and flexural deformation, while the adjacent pile of central retaining pile only experienced flexural deformation. The stress on the retaining pile crown changed little, while more stress accumulated at the bottom. Compared with the crown beam and waist beam 2, the stress on waist beam 1 was significantly affected by the temperature and increased by about 0.70 MPa/°C. Meanwhile, the stress of the rigid panel was greatly affected by the temperature, increasing 78% and 82% when the temperature increased by 15 °C on rigid panel 1 and rigid panel 2, respectively. The comparative simulation results indicated that the bending moment and shear strength of pile 1 were markedly affected by the temperature, but pile 2 and pile 3 were basically stable. Lastly, as the temperature varied, waist beam 2 had the largest change in the deflection, followed by waist beam 1; the crown beam experienced the smallest change in the deflection.


2007 ◽  
Vol 129 (6) ◽  
pp. 1028-1034 ◽  
Author(s):  
Liang Wang ◽  
Sergio Felicelli

A three-dimensional finite element model was developed to predict the temperature distribution and phase transformation in deposited stainless steel 410 (SS410) during the Laser Engineered Net Shaping (LENS™) rapid fabrication process. The development of the model was carried out using the SYSWELD software package. The model calculates the evolution of temperature in the part during the fabrication of a SS410 plate. The metallurgical transformations are taken into account using the temperature-dependent material properties and the continuous cooling transformation diagram. The ferritic and martensitic transformation as well as austenitization and tempering of martensite are considered. The influence of processing parameters such as laser power and traverse speed on the phase transformation and the consequent hardness are analyzed. The potential presence of porosity due to lack of fusion is also discussed. The results show that the temperature distribution, the microstructure, and hardness in the final part depend significantly on the processing parameters.


Sign in / Sign up

Export Citation Format

Share Document