Potential Aggregate Effects of Net-Zero Energy Homes (NZEHs) With Distributed Energy Generation on the U.S. Electrical Grid

2018 ◽  
Author(s):  
Dongsu Kim ◽  
Heejin Cho ◽  
Rogelio Luck ◽  
Pedro Mago

This study evaluates potential aggregate effects of net-zero energy home (NZEH) implementations on the U.S. electrical grid in a simulation-based analysis. The aggregate impact of large-scale NZEH implementations on the U.S. electrical grid is evaluated through a simulation-based study of prototype residential building models with distributed photovoltaic (PV) generation systems. An EnergyPlus residential prototype building model (i.e., a multi-family low-rise apartment building) is used to determine the detailed electricity consumption of each residential building model using U.S. climate weather files. This study assumes that net-metering is available on the electrical grid so that the surplus on-site electricity generation can be fed to the electrical grid. This study also considers the impact of electrical energy storage (EES) within NZEHs to effectively use on-site generated electricity on the electrical grid. Finally, surveyed residential building permits in 2017 are used to estimate net-electricity demand profiles of NZEHs on a national scale. Results indicate that adding distributed PV systems to enable annual multi-family NZEH performance can significantly increase changes in imported and exported electricity demand from and to the electrical grid during the daytime. However, using the EES within NZEHs helps reduce the peak electricity demand during the daytime. The stored electricity in the EES can also be used during the evening time. The peak net-electricity differences on the U.S. electrical grid-level could potentially be reduced during the daytime and shifted to the evening. Comparison of hourly electricity demand profiles for the actual U.S. demand versus the calculated net-demand on a national scale indicates that the percentage differences of U.S. net-electricity demand include about 4.5% and 4.8% for the multi-family NZEH without the EES on representative winter and summer days, respectively, at a maximum point. In addition, when the EES is added within the multi-family NZEH, the peak percentage differences could be reduced to about 3.4% and 4.3% on representative winter and summer days, respectively, at a maximum point.

2019 ◽  
Vol 141 (6) ◽  
Author(s):  
Dongsu Kim ◽  
Heejin Cho ◽  
Rogelio Luck

This study evaluates the potential aggregate effects of net-zero energy building (NZEB) implementations on the electrical grid in a simulation-based analysis. To estimate the impact of NZEBs on the electrical grid, a simulation-based study of an office building with a grid-tied photovoltaic (PV) power generation system is conducted. This study assumes that net-metering is available for NZEBs such that the excess on-site PV generation can be fed to the electrical grid. The impact of electrical energy storage (EES) within NZEBs on the electrical grid is also considered in this study. Different levels of NZEB adoption are examined: 20%, 50%, and 100% of the U.S. office building stock. Results indicate that significant penetration of NZEBs could potentially affect the current U.S. electricity demand profiles by reducing purchased electricity from the electrical grid and by increasing exported electricity to the electrical grid during peak hours. Annual electricity consumption of simulated office NZEBs in the U.S. climate locations is in the range of around 94–132 kWh/m2 yr. Comparison of hourly electricity demand profiles for the actual U.S. demand versus the calculated net-demand on a national scales indicates that the peak percentage difference of the U.S. net-electricity demand includes about 10.7%, 15.2%, and 9.3% for 100% of the U.S. NZEB stock on representative summer, transition, and winter days, respectively. Using EES within NZEBs, the peak percentage differences are reduced and shifted to the afternoon, including 8.6%, 13.3%, and 6.3% for 100% of the U.S. NZEB stock on each representative day.


Author(s):  
Dongsu Kim ◽  
Heejin Cho ◽  
Rogelio Luck

This study evaluates potential aggregate effects of net-zero energy building (NZEB) implementations on the electrical grid in simulation-based analysis. Many studies have been conducted on how effective NZEB designs can be achieved, however the potential impact of NZEBs have not been explored sufficiently. As significant penetration of NZEBs occurs, the aggregated electricity demand profile of the buildings on the electrical grid would experience dramatic changes. To estimate the impact of NZEBs on the electrical grid, a simulation-based study of an office building with a grid-tied PV power generation system is conducted. This study assumes that net-metering is available for NZEBs such that the excess on-site PV generation can be fed to the electrical grid. The impact of electrical energy storage (EES) within NZEBs on the electrical grid is also considered in this study. Finally, construction weighting factors of the office building type in U.S. climate zones are used to estimate the number of national office buildings. In order to consider the adoption of NZEBs in the future, this study examines scenarios with 20%, 50%, and 100% of the U.S. office building stock are composed of NZEBs. Results show that annual electricity consumption of simulated office buildings in U.S. climate locations includes the range of around 85 kWh/m2-year to 118 kWh/m2-year. Each simulated office building employs around 242 kWp to 387 kWp of maximum power outputs in the installation of on-site PV power systems to enable NZEB balances. On a national scale, the daily on-site PV power generation within NZEBs can cover around 50% to 110% of total daily electricity used in office buildings depending on weather conditions. The peak difference of U.S. electricity demand typically occurs when solar radiation is at its highest. The peak differences from the actual U.S. electricity demand on the representative summer day show 9.8%, 4.9%, and 2.0% at 12 p.m. for 100%, 50%, and 20% of the U.S. NZEB stocks, respectively. Using EES within NZEBs, the peak differences are reduced and shifted from noon to the beginning of the day, including 7.7%, 3.9%, and 1.5% for each percentage U.S. NZEB stock. NZEBs tend to create the significant curtailment of the U.S. electricity demand profile, typically during the middle of the winter day. The percentage differences at a peak point (12 p.m.) are 8.3%, 4.2%, and 1.7% for 100%, 50%, and 20% of the U.S. NZEB stocks, respectively. However, using EES on the representative winter day can flatten curtailed electricity demand curves by shifting the peak difference point to the beginning and the late afternoon of the day. The shifted peak differences show 7.4%, 3.7%, and 1.5% at 9 a.m. for three U.S. NZEB stock scenarios, respectively.


Author(s):  
Hamed Hakim ◽  
Ashish Tripathy Asutosh ◽  
Mohamad Ahmadzade Razkenari ◽  
Andriel Evandro Fenner ◽  
Charles J. Kibert

2021 ◽  
pp. 1-42
Author(s):  
Mohammad Qandil ◽  
Ahmad Abbas ◽  
Saif Al Hamad ◽  
Walaa Saadeh ◽  
Ryoichi S. Amano

Abstract Using fossil fuels as the primary way to generate electricity causes a significant effect on the environment. In 2019 more than 64% of the electricity in the United States of America was generated using fossil fuels resources, while renewable energy (RE) resources contributed to only 17% of the U.S. electricity generation for the same year. Due to the complex terrain distribution of many states in the U.S., a massive opportunity of utilizing RE resources in rural and remote areas can reduce the cost of electrical grid installation for such areas. In this study, a typical residential building with an average energy consumption of 30.25 kWh/day with a peak of 5.34 kW was considered a case study in each state to optimize a hybrid RE system and find the best alternative electrical grid system. This study presents the best configuration between Solar and Wind energy with different types of energy storage. It was found that the photovoltaic (PV) - diesel generator with battery best serves in all states. The daily radiation and diesel prices substantially affect the Levelized Cost of Energy (COE) values in each state.


Sign in / Sign up

Export Citation Format

Share Document