Investigating Density Functional Theory’s Effectiveness in Studying Metal-Organic Frameworks Structures

Author(s):  
Kendric Roberts ◽  
Yen-Lin Han

Abstract In combatting human induced climate change, carbon capture provides the potential to more slowly ease away from the dependence on hydrocarbon fuel sources, while mitigating the amount of CO2 released into the atmosphere. One promising material to use is metal-organic frameworks (MOF’s). MOF’s offer an immense variety in potential exceptionally porous structures, a property important in separation. As a result of practical experimental measurements being expensive and time consuming, interest in accomplishing the same goal through modeling has also increased. Using density functional theory to optimize the approximate experimentally measured atomic geometries has been shown to have sufficient accuracy. A previous study by Nazarian et al. was performed to optimize structures on the CoRE MOF Database using a supercomputer. The purpose of this study was to attempt to replicate their work done with a single MOF using computational resources more commonly available. Furthermore, as time tends to be the limiting factor in conducting these studies, the use of a smearing function was adjusted for two optimizations to see if any considerable improvement on the efficiency of the optimizations could be made. Our results show both optimizations improved the bond length accuracy relative to the raw data compared with the optimization from Nazarian, et al. The optimization with a more present smearing effect was able to converge the electron field in roughly half the time, while still showing nearly the same results, except for slightly more variability in the bond lengths involving transition metals. Unfortunately, the improvement in bond length, did not correspond in consistent improvement of the larger cell defining metrics. This shows that either a different energy minimum was found or the relationship between the larger cell parameters, with the more local parameters such as bond length is too complex for the method to effectively solve.

2018 ◽  
Author(s):  
Alexander C. Forse ◽  
Phillip J. Milner ◽  
Jung-Hoon Lee ◽  
Halle N. Redfearn ◽  
Julia Oktawiec ◽  
...  

The widespread deployment of carbon capture and sequestration as a climate change mitigation strategy could be facilitated by the development of more energy-efficient adsorbents. Diamine-appended metal–organic frameworks of the type diamine–M2(dobpdc) (M = Mg, Mn, Fe, Co, Ni, Zn; dobpdc4− = 4,4′-dioxidobiphenyl-3,3′-dicarboxylate) have shown promise for carbon capture applications, although questions remain regarding the molecular mechanisms of CO2 uptake in these materials. Here, we leverage the crystallinity and tunability of this class of frameworks to perform a comprehensive study of CO2 chemisorption. Using multinuclear nuclear magnetic resonance (NMR) spectroscopy experiments and van der Waals-corrected density functional theory (DFT) calculations for thirteen diamine–M2(dobpdc) variants, we demonstrate that the canonical CO2 chemisorption products—ammonium carbamate chains and carbamic acid pairs—can be readily distinguished, and that ammonium carbamate chain formation dominates for diamine–Mg2(dobpdc) materials. In addition, we elucidate a new chemisorption mechanism in the material dmpn Mg2(dobpdc) (dmpn = 2,2-dimethyl-1,3-diaminopropane), which involves formation of a 1:1 mixture of ammonium carbamate and carbamic acid and accounts for the unusual adsorption properties of this material. Finally, we show that the presence of water plays an important role in directing the mechanisms for CO2 uptake in diamine–M2(dobpdc) materials. Overall, our combined NMR and DFT approach enables a thorough depiction and understanding of CO2 adsorption within diamine–M2(dobpdc) compounds, which may aid similar studies in other amine-functionalized adsorbents in the future.


2018 ◽  
Author(s):  
Alexander C. Forse ◽  
Phillip J. Milner ◽  
Jung-Hoon Lee ◽  
Halle N. Redfearn ◽  
Julia Oktawiec ◽  
...  

The widespread deployment of carbon capture and sequestration as a climate change mitigation strategy could be facilitated by the development of more energy-efficient adsorbents. Diamine-appended metal–organic frameworks of the type diamine–M2(dobpdc) (M = Mg, Mn, Fe, Co, Ni, Zn; dobpdc4− = 4,4′-dioxidobiphenyl-3,3′-dicarboxylate) have shown promise for carbon capture applications, although questions remain regarding the molecular mechanisms of CO2 uptake in these materials. Here, we leverage the crystallinity and tunability of this class of frameworks to perform a comprehensive study of CO2 chemisorption. Using multinuclear nuclear magnetic resonance (NMR) spectroscopy experiments and van der Waals-corrected density functional theory (DFT) calculations for thirteen diamine–M2(dobpdc) variants, we demonstrate that the canonical CO2 chemisorption products—ammonium carbamate chains and carbamic acid pairs—can be readily distinguished, and that ammonium carbamate chain formation dominates for diamine–Mg2(dobpdc) materials. In addition, we elucidate a new chemisorption mechanism in the material dmpn Mg2(dobpdc) (dmpn = 2,2-dimethyl-1,3-diaminopropane), which involves formation of a 1:1 mixture of ammonium carbamate and carbamic acid and accounts for the unusual adsorption properties of this material. Finally, we show that the presence of water plays an important role in directing the mechanisms for CO2 uptake in diamine–M2(dobpdc) materials. Overall, our combined NMR and DFT approach enables a thorough depiction and understanding of CO2 adsorption within diamine–M2(dobpdc) compounds, which may aid similar studies in other amine-functionalized adsorbents in the future.


2018 ◽  
Author(s):  
Alexander C. Forse ◽  
Phillip J. Milner ◽  
Jung-Hoon Lee ◽  
Halle N. Redfearn ◽  
Julia Oktawiec ◽  
...  

The widespread deployment of carbon capture and sequestration as a climate change mitigation strategy could be facilitated by the development of more energy-efficient adsorbents. Diamine-appended metal–organic frameworks of the type diamine–M2(dobpdc) (M = Mg, Mn, Fe, Co, Ni, Zn; dobpdc4− = 4,4′-dioxidobiphenyl-3,3′-dicarboxylate) have shown promise for carbon capture applications, although questions remain regarding the molecular mechanisms of CO2 uptake in these materials. Here, we leverage the crystallinity and tunability of this class of frameworks to perform a comprehensive study of CO2 chemisorption. Using multinuclear nuclear magnetic resonance (NMR) spectroscopy experiments and van der Waals-corrected density functional theory (DFT) calculations for thirteen diamine–M2(dobpdc) variants, we demonstrate that the canonical CO2 chemisorption products—ammonium carbamate chains and carbamic acid pairs—can be readily distinguished, and that ammonium carbamate chain formation dominates for diamine–Mg2(dobpdc) materials. In addition, we elucidate a new chemisorption mechanism in the material dmpn Mg2(dobpdc) (dmpn = 2,2-dimethyl-1,3-diaminopropane), which involves formation of a 1:1 mixture of ammonium carbamate and carbamic acid and accounts for the unusual adsorption properties of this material. Finally, we show that the presence of water plays an important role in directing the mechanisms for CO2 uptake in diamine–M2(dobpdc) materials. Overall, our combined NMR and DFT approach enables a thorough depiction and understanding of CO2 adsorption within diamine–M2(dobpdc) compounds, which may aid similar studies in other amine-functionalized adsorbents in the future.


2019 ◽  
Author(s):  
Andrew Rosen ◽  
M. Rasel Mian ◽  
Timur Islamoglu ◽  
Haoyuan Chen ◽  
Omar Farha ◽  
...  

<p>Metal−organic frameworks (MOFs) with coordinatively unsaturated metal sites are appealing as adsorbent materials due to their tunable functionality and ability to selectively bind small molecules. Through the use of computational screening methods based on periodic density functional theory, we investigate O<sub>2</sub> and N<sub>2</sub> adsorption at the coordinatively unsaturated metal sites of several MOF families. A variety of design handles are identified that can be used to modify the redox activity of the metal centers, including changing the functionalization of the linkers (replacing oxido donors with sulfido donors), anion exchange of bridging ligands (considering μ-Br<sup>-</sup>, μ-Cl<sup>-</sup>, μ-F<sup>-</sup>, μ-SH<sup>-</sup>, or μ-OH<sup>-</sup> groups), and altering the formal oxidation state of the metal. As a result, we show that it is possible to tune the O<sub>2</sub> affinity at the open metal sites of MOFs for applications involving the strong and/or selective binding of O<sub>2</sub>. In contrast with O<sub>2</sub> adsorption, N<sub>2</sub> adsorption at open metal sites is predicted to be relatively weak across the MOF dataset, with the exception of MOFs containing synthetically elusive V<sup>2+</sup> open metal sites. As one example from the screening study, we predict that exchanging the μ-Cl<sup>-</sup> ligands of M<sub>2</sub>Cl<sub>2</sub>(BBTA) (H<sub>2</sub>BBTA = 1<i>H</i>,5<i>H</i>-benzo(1,2-d:4,5-d′)bistriazole) with μ-OH<sup>-</sup> groups would significantly enhance the strength of O<sub>2</sub> adsorption at the open metal sites without a corresponding increase in the N<sub>2</sub> affinity. Experimental investigation of Co<sub>2</sub>Cl<sub>2</sub>(BBTA) and Co<sub>2</sub>(OH)<sub>2</sub>(BBTA) confirms that the former exhibits only weak physisorption, whereas the latter is capable of chemisorbing O<sub>2</sub> at room temperature. The chemisorption behavior is attributed to the greater electron-donating character of the μ-OH<sup>-</sup><sub> </sub>ligands and the presence of H-bonding interactions between the μ-OH<sup>-</sup> bridging ligands and the O<sub>2</sub> adsorbate.</p>


JACS Au ◽  
2021 ◽  
Author(s):  
Young Hun Lee ◽  
YongSung Kwon ◽  
Chaehoon Kim ◽  
Young-Eun Hwang ◽  
Minkee Choi ◽  
...  

Nanoscale ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 5069-5076
Author(s):  
Miaomiao Jia ◽  
Jingyi Su ◽  
Pengcheng Su ◽  
Wanbin Li

Basic carbonates with high alkalinity are incorporated into metal–organic frameworks by solvent vapor-assisted self-conversion of partial metal centers to improve carbon capture performance.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Yamei Sun ◽  
Ziqian Xue ◽  
Qinglin Liu ◽  
Yaling Jia ◽  
Yinle Li ◽  
...  

AbstractDeveloping high-performance electrocatalysts toward hydrogen evolution reaction is important for clean and sustainable hydrogen energy, yet still challenging. Herein, we report a single-atom strategy to construct excellent metal-organic frameworks (MOFs) hydrogen evolution reaction electrocatalyst (NiRu0.13-BDC) by introducing atomically dispersed Ru. Significantly, the obtained NiRu0.13-BDC exhibits outstanding hydrogen evolution activity in all pH, especially with a low overpotential of 36 mV at a current density of 10 mA cm−2 in 1 M phosphate buffered saline solution, which is comparable to commercial Pt/C. X-ray absorption fine structures and the density functional theory calculations reveal that introducing Ru single-atom can modulate electronic structure of metal center in the MOF, leading to the optimization of binding strength for H2O and H*, and the enhancement of HER performance. This work establishes single-atom strategy as an efficient approach to modulate electronic structure of MOFs for catalyst design.


Author(s):  
Zhen Feng ◽  
Zelin Yang ◽  
Xiaowen Meng ◽  
Fachuang Li ◽  
Zhanyong Guo ◽  
...  

The development of single-atom catalysts (SACs) for electrocatalytic nitrogen reduction reaction (NRR) remains a great challenge. Using density functional theory calculations, we design a new family of two-dimensional metal-organic frameworks...


Sign in / Sign up

Export Citation Format

Share Document