scholarly journals Elucidating CO2 Chemisorption in Diamine-Appended Metal–Organic Frameworks

Author(s):  
Alexander C. Forse ◽  
Phillip J. Milner ◽  
Jung-Hoon Lee ◽  
Halle N. Redfearn ◽  
Julia Oktawiec ◽  
...  

The widespread deployment of carbon capture and sequestration as a climate change mitigation strategy could be facilitated by the development of more energy-efficient adsorbents. Diamine-appended metal–organic frameworks of the type diamine–M2(dobpdc) (M = Mg, Mn, Fe, Co, Ni, Zn; dobpdc4− = 4,4′-dioxidobiphenyl-3,3′-dicarboxylate) have shown promise for carbon capture applications, although questions remain regarding the molecular mechanisms of CO2 uptake in these materials. Here, we leverage the crystallinity and tunability of this class of frameworks to perform a comprehensive study of CO2 chemisorption. Using multinuclear nuclear magnetic resonance (NMR) spectroscopy experiments and van der Waals-corrected density functional theory (DFT) calculations for thirteen diamine–M2(dobpdc) variants, we demonstrate that the canonical CO2 chemisorption products—ammonium carbamate chains and carbamic acid pairs—can be readily distinguished, and that ammonium carbamate chain formation dominates for diamine–Mg2(dobpdc) materials. In addition, we elucidate a new chemisorption mechanism in the material dmpn Mg2(dobpdc) (dmpn = 2,2-dimethyl-1,3-diaminopropane), which involves formation of a 1:1 mixture of ammonium carbamate and carbamic acid and accounts for the unusual adsorption properties of this material. Finally, we show that the presence of water plays an important role in directing the mechanisms for CO2 uptake in diamine–M2(dobpdc) materials. Overall, our combined NMR and DFT approach enables a thorough depiction and understanding of CO2 adsorption within diamine–M2(dobpdc) compounds, which may aid similar studies in other amine-functionalized adsorbents in the future.

2018 ◽  
Author(s):  
Alexander C. Forse ◽  
Phillip J. Milner ◽  
Jung-Hoon Lee ◽  
Halle N. Redfearn ◽  
Julia Oktawiec ◽  
...  

The widespread deployment of carbon capture and sequestration as a climate change mitigation strategy could be facilitated by the development of more energy-efficient adsorbents. Diamine-appended metal–organic frameworks of the type diamine–M2(dobpdc) (M = Mg, Mn, Fe, Co, Ni, Zn; dobpdc4− = 4,4′-dioxidobiphenyl-3,3′-dicarboxylate) have shown promise for carbon capture applications, although questions remain regarding the molecular mechanisms of CO2 uptake in these materials. Here, we leverage the crystallinity and tunability of this class of frameworks to perform a comprehensive study of CO2 chemisorption. Using multinuclear nuclear magnetic resonance (NMR) spectroscopy experiments and van der Waals-corrected density functional theory (DFT) calculations for thirteen diamine–M2(dobpdc) variants, we demonstrate that the canonical CO2 chemisorption products—ammonium carbamate chains and carbamic acid pairs—can be readily distinguished, and that ammonium carbamate chain formation dominates for diamine–Mg2(dobpdc) materials. In addition, we elucidate a new chemisorption mechanism in the material dmpn Mg2(dobpdc) (dmpn = 2,2-dimethyl-1,3-diaminopropane), which involves formation of a 1:1 mixture of ammonium carbamate and carbamic acid and accounts for the unusual adsorption properties of this material. Finally, we show that the presence of water plays an important role in directing the mechanisms for CO2 uptake in diamine–M2(dobpdc) materials. Overall, our combined NMR and DFT approach enables a thorough depiction and understanding of CO2 adsorption within diamine–M2(dobpdc) compounds, which may aid similar studies in other amine-functionalized adsorbents in the future.


2018 ◽  
Author(s):  
Alexander C. Forse ◽  
Phillip J. Milner ◽  
Jung-Hoon Lee ◽  
Halle N. Redfearn ◽  
Julia Oktawiec ◽  
...  

The widespread deployment of carbon capture and sequestration as a climate change mitigation strategy could be facilitated by the development of more energy-efficient adsorbents. Diamine-appended metal–organic frameworks of the type diamine–M2(dobpdc) (M = Mg, Mn, Fe, Co, Ni, Zn; dobpdc4− = 4,4′-dioxidobiphenyl-3,3′-dicarboxylate) have shown promise for carbon capture applications, although questions remain regarding the molecular mechanisms of CO2 uptake in these materials. Here, we leverage the crystallinity and tunability of this class of frameworks to perform a comprehensive study of CO2 chemisorption. Using multinuclear nuclear magnetic resonance (NMR) spectroscopy experiments and van der Waals-corrected density functional theory (DFT) calculations for thirteen diamine–M2(dobpdc) variants, we demonstrate that the canonical CO2 chemisorption products—ammonium carbamate chains and carbamic acid pairs—can be readily distinguished, and that ammonium carbamate chain formation dominates for diamine–Mg2(dobpdc) materials. In addition, we elucidate a new chemisorption mechanism in the material dmpn Mg2(dobpdc) (dmpn = 2,2-dimethyl-1,3-diaminopropane), which involves formation of a 1:1 mixture of ammonium carbamate and carbamic acid and accounts for the unusual adsorption properties of this material. Finally, we show that the presence of water plays an important role in directing the mechanisms for CO2 uptake in diamine–M2(dobpdc) materials. Overall, our combined NMR and DFT approach enables a thorough depiction and understanding of CO2 adsorption within diamine–M2(dobpdc) compounds, which may aid similar studies in other amine-functionalized adsorbents in the future.


Author(s):  
Zhen Feng ◽  
Zelin Yang ◽  
Xiaowen Meng ◽  
Fachuang Li ◽  
Zhanyong Guo ◽  
...  

The development of single-atom catalysts (SACs) for electrocatalytic nitrogen reduction reaction (NRR) remains a great challenge. Using density functional theory calculations, we design a new family of two-dimensional metal-organic frameworks...


2020 ◽  
Vol 22 (14) ◽  
pp. 7577-7585 ◽  
Author(s):  
Florian R. Rehak ◽  
GiovanniMaria Piccini ◽  
Maristella Alessio ◽  
Joachim Sauer

Contrary to common believe, for eight adsorption cases, neither D3 or TS are an improvement compared to D2 nor van der Waals functionals or dDsC. Only the many body approaches are slightly better than D2(Ne) which uses Ne parameters for Mg2+ ions.


Author(s):  
Kendric Roberts ◽  
Yen-Lin Han

Abstract In combatting human induced climate change, carbon capture provides the potential to more slowly ease away from the dependence on hydrocarbon fuel sources, while mitigating the amount of CO2 released into the atmosphere. One promising material to use is metal-organic frameworks (MOF’s). MOF’s offer an immense variety in potential exceptionally porous structures, a property important in separation. As a result of practical experimental measurements being expensive and time consuming, interest in accomplishing the same goal through modeling has also increased. Using density functional theory to optimize the approximate experimentally measured atomic geometries has been shown to have sufficient accuracy. A previous study by Nazarian et al. was performed to optimize structures on the CoRE MOF Database using a supercomputer. The purpose of this study was to attempt to replicate their work done with a single MOF using computational resources more commonly available. Furthermore, as time tends to be the limiting factor in conducting these studies, the use of a smearing function was adjusted for two optimizations to see if any considerable improvement on the efficiency of the optimizations could be made. Our results show both optimizations improved the bond length accuracy relative to the raw data compared with the optimization from Nazarian, et al. The optimization with a more present smearing effect was able to converge the electron field in roughly half the time, while still showing nearly the same results, except for slightly more variability in the bond lengths involving transition metals. Unfortunately, the improvement in bond length, did not correspond in consistent improvement of the larger cell defining metrics. This shows that either a different energy minimum was found or the relationship between the larger cell parameters, with the more local parameters such as bond length is too complex for the method to effectively solve.


2016 ◽  
Vol 18 (11) ◽  
pp. 8075-8080 ◽  
Author(s):  
Sebastian Schwalbe ◽  
Kai Trepte ◽  
Gotthard Seifert ◽  
Jens Kortus

We present a first principles study of low-spin (LS)/high-spin (HS) screening for 3d metal centers in the metal organic framework (MOF) DUT-8(Ni).


Sign in / Sign up

Export Citation Format

Share Document