scholarly journals Modulating electronic structure of metal-organic frameworks by introducing atomically dispersed Ru for efficient hydrogen evolution

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Yamei Sun ◽  
Ziqian Xue ◽  
Qinglin Liu ◽  
Yaling Jia ◽  
Yinle Li ◽  
...  

AbstractDeveloping high-performance electrocatalysts toward hydrogen evolution reaction is important for clean and sustainable hydrogen energy, yet still challenging. Herein, we report a single-atom strategy to construct excellent metal-organic frameworks (MOFs) hydrogen evolution reaction electrocatalyst (NiRu0.13-BDC) by introducing atomically dispersed Ru. Significantly, the obtained NiRu0.13-BDC exhibits outstanding hydrogen evolution activity in all pH, especially with a low overpotential of 36 mV at a current density of 10 mA cm−2 in 1 M phosphate buffered saline solution, which is comparable to commercial Pt/C. X-ray absorption fine structures and the density functional theory calculations reveal that introducing Ru single-atom can modulate electronic structure of metal center in the MOF, leading to the optimization of binding strength for H2O and H*, and the enhancement of HER performance. This work establishes single-atom strategy as an efficient approach to modulate electronic structure of MOFs for catalyst design.

2020 ◽  
Author(s):  
Yamei Sun ◽  
Ziqian Xue ◽  
Qinglin Liu ◽  
Yaling Jia ◽  
Yinle Li ◽  
...  

Abstract Developing high-performance electrocatalysts toward hydrogen evolution reaction is important for clean and sustainable hydrogen energy, yet still challenging. Herein, we report a single-atom strategy to construct excellent metal-organic frameworks (MOFs) hydrogen evolution reaction (HER) electrocatalyst (NiRu0.13-BDC, BDC: terephthalic acid) by introducing atomically dispersed Ru. Significantly, the obtained NiRu0.13-BDC exhibits outstanding HER activity in all pH, especially with a low overpotential of only 36 mV at a current density of 10 mA cm-2 in 1 M phosphate buffered saline (PBS) solution, which is comparable to commercial Pt/C. X-ray absorption fine structures and the density functional theory calculations reveal that introducing Ru single-atom can modulate electronic structure of metal center in the MOF, leading to the optimization of binding strength for H2O and H*, and the enhancement of HER performance. This work establishes single-atom strategy as an efficient approach to modulate electronic structure of MOFs for catalyst design.


2021 ◽  
Author(s):  
Lili Fan ◽  
Zixi Kang ◽  
Mengfei Li ◽  
Daofeng Sun

Among various kinds of materials that have been investigated as electrocatalysts for hydrogen evolution reaction (HER), oxygen evolution reaction (OER) and oxygen reduction reaction (ORR), metal-organic frameworks (MOFs) emerge as...


2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Yingjie Yang ◽  
Yanhui Yu ◽  
Jing Li ◽  
Qingrong Chen ◽  
Yanlian Du ◽  
...  

AbstractThe investigation of highly effective, durable, and cost-effective electrocatalysts for the hydrogen evolution reaction (HER) is a prerequisite for the upcoming hydrogen energy society. To establish a new hydrogen energy system and gradually replace the traditional fossil-based energy, electrochemical water-splitting is considered the most promising, environmentally friendly, and efficient way to produce pure hydrogen. Compared with the commonly used platinum (Pt)-based catalysts, ruthenium (Ru) is expected to be a good alternative because of its similar hydrogen bonding energy, lower water decomposition barrier, and considerably lower price. Analyzing and revealing the HER mechanisms, as well as identifying a rational design of Ru-based HER catalysts with desirable activity and stability is indispensable. In this review, the research progress on HER electrocatalysts and the relevant describing parameters for HER performance are briefly introduced. Moreover, four major strategies to improve the performance of Ru-based electrocatalysts, including electronic effect modulation, support engineering, structure design, and maximum utilization (single atom) are discussed. Finally, the challenges, solutions and prospects are highlighted to prompt the practical applications of Ru-based electrocatalysts for HER.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Panlong Zhai ◽  
Mingyue Xia ◽  
Yunzhen Wu ◽  
Guanghui Zhang ◽  
Junfeng Gao ◽  
...  

AbstractRational design of single atom catalyst is critical for efficient sustainable energy conversion. However, the atomic-level control of active sites is essential for electrocatalytic materials in alkaline electrolyte. Moreover, well-defined surface structures lead to in-depth understanding of catalytic mechanisms. Herein, we report a single-atomic-site ruthenium stabilized on defective nickel-iron layered double hydroxide nanosheets (Ru1/D-NiFe LDH). Under precise regulation of local coordination environments of catalytically active sites and the existence of the defects, Ru1/D-NiFe LDH delivers an ultralow overpotential of 18 mV at 10 mA cm−2 for hydrogen evolution reaction, surpassing the commercial Pt/C catalyst. Density functional theory calculations reveal that Ru1/D-NiFe LDH optimizes the adsorption energies of intermediates for hydrogen evolution reaction and promotes the O–O coupling at a Ru–O active site for oxygen evolution reaction. The Ru1/D-NiFe LDH as an ideal model reveals superior water splitting performance with potential for the development of promising water-alkali electrocatalysts.


Author(s):  
Zhen Feng ◽  
Zelin Yang ◽  
Xiaowen Meng ◽  
Fachuang Li ◽  
Zhanyong Guo ◽  
...  

The development of single-atom catalysts (SACs) for electrocatalytic nitrogen reduction reaction (NRR) remains a great challenge. Using density functional theory calculations, we design a new family of two-dimensional metal-organic frameworks...


Author(s):  
Khorsed Alam ◽  
Tisita Das ◽  
Sudip Chakraborty ◽  
Prasenjit Sen

Electronic structure calculations based on density functional theory are used to identify the catalytically active sites for the hydrogen evolution reaction on single layers of the two transition metal tri-chalcogenide...


2019 ◽  
Vol 141 (15) ◽  
pp. 6271-6278 ◽  
Author(s):  
Maria A. Syzgantseva ◽  
Christopher Patrick Ireland ◽  
Fatmah Mish Ebrahim ◽  
Berend Smit ◽  
Olga A. Syzgantseva

2020 ◽  
Vol 8 ◽  
Author(s):  
Wenjuan Han ◽  
Minhan Li ◽  
Yuanyuan Ma ◽  
Jianping Yang

Hydrogen has been considered as a promising alternative energy to replace fossil fuels. Electrochemical water splitting, as a green and renewable method for hydrogen production, has been drawing more and more attention. In order to improve hydrogen production efficiency and lower energy consumption, efficient catalysts are required to drive the hydrogen evolution reaction (HER). Cobalt (Co)-based metal-organic frameworks (MOFs) are porous materials with tunable structure, adjustable pores and large specific surface areas, which has attracted great attention in the field of electrocatalysis. In this review, we focus on the recent progress of Co-based metal-organic frameworks and their derivatives, including their compositions, morphologies, architectures and electrochemical performances. The challenges and development prospects related to Co-based metal-organic frameworks as HER electrocatalysts are also discussed, which might provide some insight in electrochemical water splitting for future development.


2019 ◽  
Vol 7 (14) ◽  
pp. 8602-8608 ◽  
Author(s):  
Yunmei Du ◽  
Mingjuan Zhang ◽  
Zuochao Wang ◽  
Yanru Liu ◽  
Yongjun Liu ◽  
...  

Hydrogen evolution reaction (HER) via electrocatalysis using cost-efficient bimetallic phosphide as electrocatalyst holds a great promise for environmentally friendly energy technologies.


Sign in / Sign up

Export Citation Format

Share Document