Influence of Cu-Water and CNT-Water Nanofluid on Natural Convection Heat Transfer in a Triangular Solar Collector

Author(s):  
Didarul Ahasan Redwan ◽  
Md. Habibur Rahman ◽  
Hasib Ahmed Prince ◽  
Emdadul Haque Chowdhury ◽  
M. Ruhul Amin

Abstract A numerical study on natural convection heat transfer in a right triangular solar collector filled with CNT-water and Cuwater nanofluids has been conducted. The inclined wall and the bottom wall of the cavity are maintained at a relatively lower temperature (Tc), and higher temperature (Th), respectively, whereas the vertical wall, is kept adiabatic. The governing non-dimensional partial differential equations are solved by using the Galerkin weighted residual finite element method. The Rayleigh number (Ra) and the solid volume-fraction of nanoparticles (ϕ) are varied in the range of 103 ≤ Ra ≤ 106, and 0 ≤ ϕ ≤ 0.1, respectively, to carry out the parametric simulations within the laminar region. Corresponding thermal and flow fields are presented via isotherms and streamlines. Variations of average Nusselt number as a function of Rayleigh number have been examined for different solid volume-fraction of nanoparticles. It has been found that the natural convection heat transfer becomes stronger with the increment of solid volume fraction and Rayleigh number, but the strength of circulation reduces with increasing nanoparticles’ concentration at low Ra. Conduction mode dominates for lower Ra up to a certain limit of 104. It is also observed that when the solid volume fraction is increased from 0 to 0.1 for a particular Rayleigh number, the average Nusselt number is increased to a great extent, but surprisingly, the rate of increment is more pronounced at lower Ra. Moreover, it is seen that Cu-water nanofluid offers slightly better performance compared to CNT-water but the difference is very little, especially at lower Ra.

2020 ◽  
Author(s):  
Sattar Aljobair ◽  
Akeel Abdullah Mohammed ◽  
Israa Alesbe

Abstract The natural convection heat transfer and fluid flow characteristic of water based Al2O3 nano-fluids in a symmetrical and unsymmetrical corrugated annulus enclosure has been studied numerically using CFD. The inner cylinder is heated isothermally while the outer cylinder is kept constant cold temperature. The study includes eight models of corrugated annulus enclosure with constant aspect ratio of 1.5. The governing equations of fluid motion and heat transfer are solved using stream-vorticity formulation in curvilinear coordinates. The range of solid volume fractions of nanoparticles extends from PHI=0 to 0.25, and Rayleigh number varies from 104 to 107. Streamlines, isotherms, local and average Nusselt number of inner and outer cylinder has been investigated in this study. Sixty-four correlations have been deduced for the average Nusselt number for the inner and outer cylinders as a function of Rayleigh number have been deduced for eight models and five values of volume fraction of nano particles with an accuracy range 6-12 %. The results show that, the average heat transfer rate increases significantly as particle volume fraction and Rayleigh number increase. Also, increase the number of undulations in unsymmetrical annuli reduces the heat transfer rates which remain higher than that in symmetrical annuli. There is no remarkable change in isotherms contour with increase of volume fraction of nanofluid.


2012 ◽  
Vol 16 (5) ◽  
pp. 1317-1323 ◽  
Author(s):  
Ching-Chang Cho ◽  
Her-Terng Yau ◽  
Cha’o-Kuang Chen

This paper investigates the natural convection heat transfer enhancement of Al2O3-water nanofluid in a U-shaped cavity. In performing the analysis, the governing equations are modeled using the Boussinesq approximation and are solved numerically using the finite-volume numerical method. The study examines the effects of the nanoparticle volume fraction, the Rayleigh number and the geometry parameters on the mean Nusselt number. The results show that for all values of the Rayleigh number, the mean Nusselt number increases as the volume fraction of nanoparticles increases. In addition, it is shown that for a given length of the heated wall, extending the length of the cooled wall can improve the heat transfer performance.


2013 ◽  
Vol 302 ◽  
pp. 422-428
Author(s):  
Rached Ben-Mansour ◽  
Mohammed A. Habib

Natural convection heat transfer from discrete heat sources to nanofluids is of great importance because of its application in the cooling of electronic components. The presence of the nanoparticles in the fluids increases appreciably the effective thermal conductivity of the fluid and consequently enhances the heat transfer characteristics. The present study is aimed to investigate numerically the natural convection heat transfer from discrete heat sources to nanofluids. The behavior of nanofluids was investigated numerically inside a heated cavity to gain insight into convective recirculation and flow processes induced by a nanofluid. A computational model was developed to analyze heat transfer performance of nanofluids inside a cavity taking into account the solid particle dispersion. The model was validated through the comparison with available experimental data. The results showed good agreement. The influence of the solid volume fraction on the flow pattern and heat transfer inside the cavity was investigated. The results show that the intensity of the streamlines increases with the volume fraction. It is also indicated that higher velocities along the centerline of the enclosure are achieved as the volume of nanoparticles increases. The influence of the loading factor is more distinguished at the upper heaters and in particular at the highest heater. The heat transfer increases as the volume fraction of the nanoparticles increases from 2 to 10%.


2018 ◽  
Vol 140 (5) ◽  
Author(s):  
Swastik Acharya ◽  
Sumit Agrawal ◽  
Sukanta K. Dash

Natural convection heat transfer from a vertical hollow cylinder suspended in air has been analyzed numerically by varying the Rayleigh number (Ra) in the laminar (104 ≤ Ra ≤ 108) regime. The simulations have been carried out by changing the ratio of length to pipe diameter (L/D) in the range of 0.05 ≤ L/D≤20. Full conservation equations have been solved numerically for a vertical hollow cylinder suspended in air using algebraic multigrid solver of fluent 13.0. The flow and the temperature field around the vertical hollow cylinder have been observed through velocity vectors and temperature contours for small and large L/D. It has been found that the average Nusselt number (Nu) for vertical hollow cylinder suspended in air increases with the increase in Rayleigh number (Ra) and the Nu for both the inner and the outer surface also increases with Ra. However, with the increase in L/D, average Nu for the outer surface increases almost linearly, whereas the average Nu for the inner surface decreases and attains asymptotic value at higher L/D for low Ra. In this study, the effect of parameters like L/D and Ra on Nu is analyzed, and a correlation for average Nusselt number has been developed for the laminar regime. These correlations are accurate to the level of ±6%.


2012 ◽  
Vol 16 (5) ◽  
pp. 1309-1316 ◽  
Author(s):  
Ching-Chang Cho ◽  
Her-Terng Yau ◽  
Cha’o-Kuang Chen

Numerical investigations are performed into the natural convection heat transfer characteristics within a wavy-wall enclosure filled with Cu-water nanofluid. In the paper, the bottom wall of the enclosure has a wavy geometry and is maintained at a constant high temperature, while the top wall is straight and is maintained at a constant low temperature. The left and right walls of the enclosure are both straight and insulated. In performing the simulation, the Boussinesq approximation is used to model the governing equations. The study examines the effect of the nanoparticle volume fraction, the Rayleigh number, the wave amplitude, and the wavelength on the heat transfer characteristics. It is shown that the heat transfer performance can be enhanced as the volume fraction of nanoparticles increases. It is also shown that for a given Rayleigh number, the heat transfer effect can be optimized via an appropriate changing of the geometry conditions.


Author(s):  
M. Sheikholeslami ◽  
R. Ellahi ◽  
Mohsan Hassan ◽  
Soheil Soleimani

Purpose – The purpose of this paper is to study the effects of natural convection heat transfer in a cold outer circular enclosure containing a hot inner elliptic circular cylinder. The fluid in the enclosure is Cu-water nanofluid. The main emphasis is to find the numerical treatment for the said mathematical model. The effects of Rayleigh number, inclined angle of elliptic inner cylinder, effective of thermal conductivity and viscosity of nanofluid, volume fraction of nanoparticles on the flow and heat transfer characteristics have been examined. Design/methodology/approach – A very effective and higher order numerical scheme Control Volume-based Finite Element Method (CVFEM) is used to solve the resulting coupled equations. The numerical investigation is carried out for different governing parameters namely; the Rayleigh number, nanoparticle volume fraction and inclined angle of elliptic inner cylinder. The effective thermal conductivity and viscosity of nanofluid are calculated using the Maxwell-Garnetts (MG) and Brinkman models, respectively. Findings – The results reveal that Nusselt number increases with an increase of nanoparticle volume fraction, Rayleigh numbers and inclination angle. Also it can be found that increasing Rayleigh number leads to a decrease in heat transfer enhancement. For high Rayleigh number the minimum heat transfer enhancement ratio occurs at. Originality/value – To the best of the authors’ knowledge, no such analysis is available in the literature which can describe the natural convection heat transfer in a nanofluid filled enclosure with elliptic inner cylinder by means of CVFEM.


Processes ◽  
2021 ◽  
Vol 9 (9) ◽  
pp. 1508
Author(s):  
Nagesh Babu Balam ◽  
Tabish Alam ◽  
Akhilesh Gupta ◽  
Paolo Blecich

The natural convection flow in the air gap between the absorber plate and glass cover of the flat plate solar collectors is predominantly evaluated based on the lumped capacitance method, which does not consider the spatial temperature gradients. With the recent advancements in the field of computational fluid dynamics, it became possible to study the natural convection heat transfer in the air gap of solar collectors with spatially resolved temperature gradients in the laminar regime. However, due to the relatively large temperature gradient in this air gap, the natural convection heat transfer lies in either the transitional regime or in the turbulent regime. This requires a very high grid density and a large convergence time for existing CFD methods. Higher order numerical methods are found to be effective for resolving turbulent flow phenomenon. Here we develop a non-dimensional transient numerical model for resolving the turbulent natural convection heat transfer in the air gap of a flat plate solar collector, which is fourth order accurate in both spatial and temporal domains. The developed model is validated against benchmark results available in the literature. An error of less than 5% is observed for the top heat loss coefficient parameter of the flat plate solar collector. Transient flow characteristics and various stages of natural convection flow development have been discussed. In addition, it was observed that the occurrence of flow mode transitions have a significant effect on the overall natural convection heat transfer.


Sign in / Sign up

Export Citation Format

Share Document