Development of an Ultrasonic Phased Array Testing System That Can Evaluate Quality of Weld Seam of High-Quality ERW Pipes

Author(s):  
Yutaka Matsui ◽  
Yukinori Iizuka ◽  
Masahito Suzuki ◽  
Eiichi Urahata ◽  
Tomohiro Inoue ◽  
...  

A high sensitivity ultrasonic testing system for inspection of the weld seam of ERW pipes was developed. The factors that affect the quality of the weld seam were investigated using an ultrasonic C-scan method with a focused probe and samples sliced from weld seams. As the result, it was found that a scattered-type penetrator consisting of micro oxides is a key factor in the quality of the weld seam. Absorbed energy in the Charpy impact test can be evaluated by the ultrasonic echo amplitude with the optimized focused beam size (about 1mm2) to detect the scattered-type penetrator. In order to evaluate the density of the scattered-type penetrator in weld seams with the optimum focused beam size for pipe, a point focused beam tandem method was developed by applying the ultrasonic phased array technique. The sensitivity of the developed method is 20dB higher for a standard artificial through drilled hole whose diameter is 1.6mm. A precise seam tracking system was also developed for application of the point focused beam tandem method to the actual ERW pipe manufacturing process. Since the allowance for applying the focused beam to the weld seam is very narrow, i.e., about 1mm, a circumference multi-point simultaneous receiving technique and thermal image-type seam detection technique were developed. The developed ultrasonic testing system has been in operation at the 24″ ERW mill at East Japan Works (Keihin District) of JFE Steel Corporation since March 2011. The combination of the ultrasonic testing system and an oxide control technique now contributes to production of high-performance, high-quality ERW pipe “Mighty Seam®” for use in frigid environments.

Author(s):  
Cunjian Miao ◽  
Weican Guo ◽  
Zhangwei Ling ◽  
Ping Tang

Compressed natural gas (CNG) storage well is a kind of pressure vessel buried underground. The detection of corrosion, which may be induced by the surrounding soil and different medium, is important for the safety security of the well, and protects it from CNG leakage or casing explosion. Among non-destructive examination techniques for corrosion detecting, the ultrasonic techniques are popularly utilized, in which the phased array approach can offer distinct advantages. To investigate both reliability and applicability of the phased array technique in the storage well, a complex design with a 512-element ultrasonic phased array that covered the entire cross-section was discussed, and phased array parameters were determined, including array elements, array element size, ultrasonic frequency and so on. An ultrasonic testing system was designed based on the above design, including a frame for holding phased array probes, a specific vessel for storing ultrasonic cards and other components, and an in-pipe robot designed for instruments’ moving in the storage well. The general corrosion condition described by thickness images were captured by the ultrasonic testing system with B, C and D-scan functions, in which circumferential electronic linear scanning was performed by the phased array probes and axial scanning was done by a mechanical scanning device. A method for minimizing the external pressure from water column necessary for coupling was put forward in the scanning and detection process. The sample for CNG storage well with artificial defects was built in laboratory environments and experiments were conducted to validate detection effects, and the phased array technique provided good sensitivity and efficiency, which may lead to a successful application in CNG storage well examination.


Author(s):  
Paul A. Meyer

Ultrasonic testing of metal welds has been in use for many years. Scanning methods using both contact and immersion methods are often used at the time of manufacture and also during periodic in-service inspection programs. But because of a variety of component configurations and potential flaw geometries it is often necessary to perform several inspections, each with a different probe configuration to assure adequate defect delegability. It is possible that a properly designed phased array probe can perform several different inspections without changing hardware thereby reducing inspection times. This presentation reviews the design and operation of ultrasonic phased array transducers and the necessary features to achieve the desired performance. Situations in which these probes have already been implemented effectively are also discussed.


Author(s):  

An algorithm for tracking of the welded seams grooving by using a Kalman filter based on six characteristic points of the profile obtained using the RF627 laser vision sensor is proposed. In order to reduce the error in weld seams control, a multilayer neural network with a backpropagation algorithm is created to compensate for errors caused by colored noise when using the Kalman filter. Experimental results show that when the algorithm is applied, the error in tracking the trajectory of weld seams is reduced. Keywords tracking of weld seams; multilayer/multi-pass welding; Kalman filter; multilayer perceptron


2019 ◽  
Vol 5 (3) ◽  
Author(s):  
Jiri Hodac ◽  
Pavel Mares ◽  
Jaromir Janousek ◽  
Martin Linhart

This work is designed to artificially create test specimens with flaws that behave the same way as real-function flaws when observed by nondestructive testing (NDT) technologies. Thus, the understanding of the detection limitations of NDT methods is needed. In this study, real, realistic, and artificial flaws were compared by ultrasonic phased array technology. Fatigue flaws, which belong to the most common structural issues (Ruzicka, M., Hanke, M., and Rost, M., 1987, Dynamicka Pevnost a Zivotnost, CVUT, Prague, Czech Republic, p. 75), are investigated. Measurements have revealed significant differences in the amplitude of ultrasonic echo from fatigue cracks in distinct phases of crack propagation. Studied specimens with realistic flaws have demonstrated their quality for calibration, staff training, and NDT system qualification. More realistic test specimens will increase ultrasonic test result reliability.


NDT World ◽  
2019 ◽  
pp. 37-41
Author(s):  
Алан Колдер ◽  
Alan Caulder

Full matrix capture and the total focusing method are considered by many NDT experts to be the next major improvement to phased array ultrasonic testing. This article showcases some advantages the new techniques offer compared to the capabilities of traditional ultrasonic phased array.


Author(s):  
Weican Guo ◽  
Shengjie Qian ◽  
Zhangwei Ling ◽  
Dongsheng Hou

The tube to tube-sheet weld is the main connection structure of heat exchanger. This paper presents the phased array ultrasonic technique for testing the tube to tube-sheet welds of heat exchanger. The optimization analysis of phased array parameters and the simulation on the acoustic field with CIVA software were completed. The mentioned phased array parameters included array elements, array element size, deflection angle, ultrasonic frequency and so on. An ultrasonic testing system was designed and fabricated in accordance with the structure of heat exchange tube and fillet welds position. The ultrasonic C-scan was carried out by the ultrasonic testing system with its circumferential scanning by a mechanical scanning device while the axial electronic linear scanning by the phased array probe. At last, tests on samples with the porosity and incomplete fusion flaws were performed by the ultrasonic testing system. Experimental results showed that the phased array ultrasonic technique could effectively detect the porosity flaws and the incomplete fusion flaws in the tube to tube-sheet welds of heat exchanger.


2001 ◽  
Author(s):  
Sung-Jin Song ◽  
Hyeon Jae Shin ◽  
Jeong-Rock Kwon

Abstract Flaw characterization with ultrasonic phased array technique involves to key issues, such as obtaining the high quality flaw images and determining the quantitative flaw information (such as location, type and size). This paper deals with these two key issues. For obtaining the high quality images, it is necessary to optimize the parameters of array transducers. To address such a need, a very computationally efficient radiation beam model is developed based on the boundary diffraction wave model, and the 3-D radiation beam fields from array transducers were simulated to investigate their characteristics in detail. From the sectorial images provided by the ultrasonic phased array technique, flaw size can be determined very successfully, if the type of the scatters is identified in advance. For the determination of the type of scatters, an intelligent signal interpretation scheme based on ultrasonic pattern recognition approach is studied, and the variation of features according to the steering angle is found to be a very sensitive feature for this purpose. The performance of the proposed approach is demonstrated with the initial experiments.


1988 ◽  
Vol 10 (1) ◽  
pp. 1-11 ◽  
Author(s):  
M. O'Donnell ◽  
S.W. Flax

Using a modified real-time phased array sector scanner, phase aberrations and amplitude fluctuations across the imaging aperture have been measured in a number of human subjects. Data from these subjects were classified into two categories based on the quality of conventional longitudinal images of the liver. Measured phase aberrations were very small in all subjects exhibiting high quality images. In contrast, large phase aberrations were measured in subjects producing low quality images. However, there were no significant amplitude variations across the array for all subjects studied. These results suggest that the absence of significant phase aberrations is a necessary condition for high quality phased array imaging. If so, improvements in clinical image quality in Such Subjects may be possible.


Author(s):  
Shaojun Wang ◽  
Xiaoying Tang ◽  
Pan Song ◽  
Bin Ren ◽  
Yaozhou Qian ◽  
...  

Responding to non-conductive, non-magnetic material characteristics of polyethylene (PE) pipe, this paper comes up with the ground penetrating radar (GPR) detection for urban PE gas pipeline visualization research in order to solve the problems of positioning difficulty, and to avoid potential safety hazards caused by undefined positioning of PE pipeline, so that it can provide some experience to the application of position detection technology to locate buried polyethylene pipeline. Responding to the special material properties and welding form and based on the analysis of traditional ultrasonic testing for polyethylene butt-fusion joint, this paper comes up with an ultrasonic phased array dynamic focusing and S scanning imaging technology, to make a testing experiment on polyethylene butt-fusion joint. Results of the phased array ultrasonic testing of cracks in polyethylene butt-fusion joints shows that the testing method is feasible, and verifies the buried polyethylene butt-fusion joints engineering. This research would provide experience to the application of ultrasonic phased array technology in buried polyethylene pipeline inspection.


Sign in / Sign up

Export Citation Format

Share Document