laser vision
Recently Published Documents


TOTAL DOCUMENTS

257
(FIVE YEARS 72)

H-INDEX

16
(FIVE YEARS 2)

Author(s):  
Chao Liu ◽  
Hui Wang ◽  
Yu Huang ◽  
Youmin Rong ◽  
Jie Meng ◽  
...  

Abstract Mobile welding robot with adaptive seam tracking ability can greatly improve the welding efficiency and quality, which has been extensively studied. To further improve the automation in multiple station welding, a novel intelligent mobile welding robot consists of a four-wheeled mobile platform and a collaborative manipulator is developed. Under the support of simultaneous localization and mapping (SLAM) technology, the robot is capable of automatically navigating to different stations to perform welding operation. To automatically detect the welding seam, a composite sensor system including an RGB-D camera and a laser vision sensor is creatively applied. Based on the sensor system, the multi-layer sensing strategy is performed to ensure the welding seam can be detected and tracked with high precision. By applying hybrid filter to the RGB-D camera measurement, the initial welding seam could be effectively extracted. Then a novel welding start point detection method is proposed. Meanwhile, to guarantee the tracking quality, a robust welding seam tracking algorithm based on laser vision sensor is presented to eliminate the tracking discrepancy caused by the platform parking error, through which the tracking trajectory can be corrected in real-time. The experimental results show that the robot can autonomously detect and track the welding seam effectively in different station. Also, the multiple station welding efficiency can be improved and quality can also be guaranteed.


Robotics ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 126
Author(s):  
Christos C. Constantinou ◽  
George P. Georgiades ◽  
Savvas G. Loizou

This paper describes the development and experimental validation of algorithms for a novel laser vision system (LVS), suitable for measuring the relative posture from both solid and mesh-like targets in underwater environments. The system was developed in the framework of the AQUABOT project, a research project dedicated to the development of an underwater robotic system for inspection of offshore aquaculture installations. In particular, an analytical model for three-medium refraction that takes into account the nonlinear hemispherical optics for image rectification has been developed. The analytical nature of the model allows the online estimation of the refractive index of the external medium. The proposed LVS consists of three line-lasers within the field of view of the underwater robot camera. The algorithms that have been developed in this work provide appropriately filtered point-cloud datasets from each laser, as well as high-level information such as distance and relative orientation of the target with respect to the ROV. In addition, an automatic calibration procedure, along with the accompanying hardware for the underwater laser vision system has been developed to reduce the calibration overhead required by regular maintenance operations for underwater robots operating in seawater. Furthermore, a spatial image filter was developed for discriminating between mesh and non-mesh-like targets in the LVS measurements. Finally, a set of experiments was carried out in a controlled laboratory environment, as well as in real conditions at offshore aquaculture installations demonstrating the performance of the system.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Byunghoon Chung ◽  
Joon Hyun Kim ◽  
David S. Y. Kang ◽  
Dong Jun Kang ◽  
Eung Kweon Kim ◽  
...  

Abstract Background To investigate the surgical outcomes of implantable collamer lens (ICL) implantation in eyes with residual myopia after primary laser vision correction (LVC) surgeries. Methods This study included patients who underwent ICL implantation and had a history of LVC surgery, including photorefractive keratectomy (PRK) or laser-assisted in situ keratomileusis (LASIK). Visual acuity and refractive error were assessed pre and 3-months postoperatively and the efficacy and safety indices calculated accordingly. Results A total of 30 eyes of 17 patients were included in this study. At 3 months, the mean logMAR uncorrected distance visual acuity (UDVA), corrected distance visual acuity (CDVA), and spherical equivalent were − 0.03 ± 0.11 (include logMAR), − 0.04 ± 0.09 (include logMAR), and − 0.06 ± 0.33 diopters (D), respectively. The 3-month Snellen UDVA was better than 20/20 for 83% of eyes, and 97% of eyes showed an unchanged or improved CDVA after surgery. The mean efficacy and safety indices were 1.11 ± 0.22 and 1.13 ± 0.20, respectively. Further, 93 and 100% of eyes were within ±0.5 and ± 1.0 D of the attempted spherical equivalent refraction, respectively. Conclusions ICL implantation in eyes with myopic regression after previous LVC surgery showed safe, effective, and predictable outcomes. Trial registration retrospectively registered.


2021 ◽  
Vol 12 (3) ◽  
pp. 175-182
Author(s):  
V. A. Alekseev ◽  
V. G. Kostin ◽  
A. V. Usoltseva ◽  
V. P. Usoltsev ◽  
S. I. Yuran

One of the significant weaknesses of excimer laser-based vision correction devices is the difficulty of achieving a required change in the refractive properties of the cornea to sharply focus the image on the retina with distance from the working area (ablation zone) center to the periphery due to a change in the laser beam incidence angle. The study is aimed at improving the quality of laser action on the eye cornea by introducing an optical corrective system into the existing excimer laser vision correction equipment, ensuring the coincidence of the direction of the laser beam incidence on the corneal surface with the normal.It has been shown that the greater the reflection coefficient, the lower the absorbed energy, and the shallower the laser radiation penetration and ablation depths, which reduces the laser action opportunities and quality. When using excimer laser vision correction devices, it has been proposed to change the angle of the laser beam incidence on the cornea with a distance from the working area (ablation zone) center to the periphery during the surgery by introducing an optical corrective system based on a lightweight controllable and movable mirror, which allows achieving the coincidence of the direction of the laser beam incidence on the corneal surface with the normal.The studies have shown that the coincidence of the laser beam incidence on the corneal surface at any point with the normal when using a priori data on the specifics of the patient's eye allows expanding the functional opportunities of excimer laser photoablation, i. e., expand the ablation zone by 30 % and eliminate the possibility of errors caused by the human factor. The technique proposed can be used for excimer laser vision correction according to PRK, LASIK, Femto-LASIK, and other methods. To implement this approach, a patented excimer laser vision correction unit has been proposed with a PCcontrolled optical shaping system comprising galvo motor platforms and galvo mirrors installed on them.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Tian-Bing Ma ◽  
Qiang Wu ◽  
Fei Du ◽  
Wei-Kang Hu ◽  
Yong-Jing Ding

Because the mine is damp and dark, it is not easy to detect the rigid tank channel’s structural failure directly. Therefore, we judged the tank channel’s surface condition by detecting the magnitude of the vibration displacement of the lifting container. In our study, we used a laser vision system to measure the structural vibration displacement. In order to accurately segment the laser spot information from the vibration image, we proposed an approach that links the relationship between the gray value of the area adjacent to the threshold point and the background’s gray value to the target in the image. We used MCE to evaluate the segmentation effect of threshold segmentation and verified the improved algorithm’s accuracy by detecting the pixel centroid of laser spots. Results show that the improved algorithm in our study has the best threshold segmentation effect, the error classification can be close to 0.0003, and the minimum deviation of the obtained vibration displacement is close to 0.1 pixels, which can realize the accurate extraction of the vibration signal of the vertical shaft tank. The novelty of this method lies in the accurate threshold segmentation and noise reduction processing of the laser speck vibration image under various interference environments in the operation of the mine hoisting system and the accurate acquisition of vibration signals. The research work provides a basis for the accurate evaluation of mechanical faults of automation technology.


2021 ◽  
Vol 9 (2) ◽  
pp. 133-141
Author(s):  
Valeriy Alexeev ◽  
Dmitry Goryachkin ◽  
Nikolay Gryaznov ◽  
Viktor Kuprenyuk ◽  
Evgeniy Sosnov

The analysis of the implementation problems of technical vision systems based on the use of time-of-flight laser lidars is carried out. It is concluded that the implementation of vision systems with acceptable parameters dictates an excessively high cost of the lidar. An alternative version of the lidar implementation is considered – a gated lidar based on a laser vision system. Replacing the broadband detector and high-speed scanning system with a gated CCD-matrix can significantly reduce the cost of the lidar while ensuring the high resolution of the lidar. The analysis of the dependence of the signal-to-noise ratio for gated lidar with and without an electron-optical converter has shown that in bad weather conditions the decrease in the gain of the useful signal when the image intensifier is excluded is compensated by the exclusion of the EOC's noise factor, so that the loss in the observation distance is less than 15%.


Author(s):  
Régis Henrique Gonçalves e Silva ◽  
Daniel Galeazzi ◽  
Mateus Barancelli Schwedersky ◽  
Felippe Kalil Mendonça ◽  
Alberto Viviani Bonamigo ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document