Vibration Analysis of a Coupled Multibody Dynamic Model of a Contact Mechanics Roller Rig

Author(s):  
Sajjad Z. Meymand ◽  
Mehdi Taheri ◽  
Milad Hosseinipour ◽  
Mehdi Ahmadian

This study develops a detailed multi-body dynamic model of the Virginia Tech Roller Rig (VTRR) using multi body simulation software package SIMPACK. The Virginia Tech Roller Rig, a single-wheel roller rig with vertical plane roller configuration, is a state of the art testing fixture for experimental investigation of wheel-rail contact mechanics and dynamics. In order to have a better understanding of the dynamics at the contact, dynamic behavior and interaction of various components and subsystems of the rig need to be understood. In addition, it is essential to make sure that the measurements are only due to particular subject of study and not any intermittent source of disturbance. Any unwanted vibration at the contact needs to be compensated in the data measurements. To this end, a fully detailed model of the rig including all the components is developed in SIMPACK. The coupled multibody dynamic model represents all the major components of the rig and their interactions. The multibody dynamic model is employed for conducting noise, vibration, harshness (NVH) analysis of the rig. An Eigenvalue analysis provides the modal frequencies and mode shapes of the system. The modal analysis predicts the first natural frequency of the rig to be approximately 70 Hz, providing a relatively high bandwidth for evaluating the dynamics at the wheel-rail interface. Only dynamic that could have higher frequencies than the rig’s bandwidth is wheel-rail squeal. The model is also used to evaluate the performance of the contact force measurement system designed for the rig. The results show that the contact forces can be estimated precisely using the force measurement system.

2017 ◽  
Vol 7 (1) ◽  
Author(s):  
Andrea Cristina de Lima-Pardini ◽  
Raymundo Machado de Azevedo Neto ◽  
Daniel Boari Coelho ◽  
Catarina Costa Boffino ◽  
Sukhwinder S. Shergill ◽  
...  

2011 ◽  
Vol 383-390 ◽  
pp. 774-779
Author(s):  
Ye Min Guo ◽  
Lan Mei Wang ◽  
Rui Yong Xue

According to the requirements of measurement of plantar pressure and shear stress in the meantime, this thesis puts forward a plan to construct a new insole plantar pressure and shear stress system based on multifunction data acquisition modular and Lab VIEW. Then the hardware part and software part are designed and developed respectively. There are 3 sensors are arrayed at each measurement point, that means 3 sensors are assembled in 3 different directions of X,Y and Z . The piezoelectric ceramic type sensors are designed, manufactured and calibrated according to scientific methods. Meanwhile, the DAQ card is selected carefully. Of course, the software part is developed based on Lab VIEW. A series of tests are performed in order to validate the function of the measurement system. The results satisfy the anticipated design requirements. At last, the problems and application trend of the measurement system are predicted.


2009 ◽  
Vol 37 (1) ◽  
pp. 54-62 ◽  
Author(s):  
O. FROMENTIN ◽  
C. LASSAUZAY ◽  
S. ABI NADER ◽  
J. FEINE ◽  
R. F. De ALBUQUERQUE JUNIOR

2002 ◽  
Vol 26 (8) ◽  
pp. 1608-1614
Author(s):  
Gyeong-Pyo Ha ◽  
Jung-Su Kim ◽  
Myeong-Rae Jo ◽  
Dae-Yun O

2007 ◽  
Vol 546-549 ◽  
pp. 2103-2106 ◽  
Author(s):  
X.L. Wu ◽  
W.M. Yang ◽  
S.H. Zhu ◽  
J.Z. Guo ◽  
T.N. Lu ◽  
...  

The effect of magnet moving speed on the relaxation of the maximum levitation force of YBCO bulk has been investigated. The experiment was carried out between a cylinder permanent magnet and a single-domain YBCO bulk, and the levitation force was measured using a self-made levitation force measurement system. It is found that the levitation force decreases with time after the gap distance between the magnet and YBCO bulk reduced to 2 mm and kept for the test. It is also found that the levitation force and its relaxation rate is different for different moving speed between the magnet and the YBCO bulk, and the higher the moving speed, the greater the relaxation rate of levitation force. However, the largest levitation force is obtained at an optimal speed, the higher the levitation force, and the faster the relaxation of levitation force.


Sign in / Sign up

Export Citation Format

Share Document