Rail Tank Car Total Containment Fire Testing: Results and Observations

Author(s):  
Francisco Gonzalez ◽  
Anand Prabhakaran ◽  
Andrew Robitaille ◽  
A. M. Birk ◽  
Frank Otremba

The frequent incidences of Non-Accident Releases (NARs) of lading from tank cars have resulted in an increasing interest in transporting hazardous materials in total containment conditions (i.e., no pressure relief devices). However, the ability of tank cars to meet thermal protection requirements provided in the Code of Federal Regulations under conditions of total containment has not been established. The intent of this effort was to evaluate through a series of third-scale fire tests, the ability of tank cars to meet the thermal protection requirements under total containment conditions, with a particular focus on caustic ladings. A previous paper on this effort described the test design and planning effort associated with this research effort. A series of seven fire tests were conducted using third scale tanks. The test fires simulated fully engulfing, hydrocarbon fueled, pool fire conditions. The initial tests were conducted with water as a lading under jacketed and non-jacketed conditions and also with different fill levels (98% full or 50% full). Additionally, two tests were conducted with the caustic, Sodium Hydroxide as the lading, each test with a different fill level. In general, the tanks with water were allowed to fail or reach near-failure conditions, whereas, the tests with the caustic lading were not allowed to proceed near failure for safety reasons. This paper describes the results and observations from the fire tests, and discusses the various factors that affected the fire test performance of the test tanks. Review of results from the one-third scale tests, and subsequent scaling to full-scale suggest that a full-scale tank car filled with 50% NaOH solution is unlikely to meet the 100-minute survival requirement under conditions of total containment.

Viruses ◽  
2020 ◽  
Vol 13 (1) ◽  
pp. 18
Author(s):  
Michèle Bergmann ◽  
Mike Holzheu ◽  
Yury Zablotski ◽  
Stephanie Speck ◽  
Uwe Truyen ◽  
...  

Measuring antibodies to evaluate dogs´ immunity against canine parvovirus (CPV) is useful to avoid unnecessary re-vaccinations. The study aimed to evaluate the quality and practicability of four point-of-care (POC) tests for detection of anti-CPV antibodies. The sera of 198 client-owned and 43 specific pathogen-free (SPF) dogs were included; virus neutralization was the reference method. Specificity, sensitivity, positive and negative predictive value (PPV and NPV), and overall accuracy (OA) were calculated. Specificity was considered to be the most important indicator for POC test performance. Differences between specificity and sensitivity of POC tests in the sera of all dogs were determined by McNemar, agreement by Cohen´s kappa. Prevalence of anti-CPV antibodies in all dogs was 80% (192/241); in the subgroup of client-owned dogs, it was 97% (192/198); and in the subgroup of SPF dogs, it was 0% (0/43). FASTest® and CanTiCheck® were easiest to perform. Specificity was highest in the CanTiCheck® (overall dogs, 98%; client-owned dogs, 83%; SPF dogs, 100%) and the TiterCHEK® (overall dogs, 96%; client-owned dogs, 67%; SPF dogs, 100%); no significant differences in specificity were observed between the ImmunoComb®, the TiterCHEK®, and the CanTiCheck®. Sensitivity was highest in the FASTest® (overall dogs, 95%; client-owned dogs, 95%) and the CanTiCheck® (overall dogs, 80%; client-owned dogs, 80%); sensitivity of the FASTest® was significantly higher compared to the one of the other three tests (McNemars p-value in each comparison: <0.001). CanTiCheck® would be the POC test of choice when considering specificity and practicability. However, differences in the number of false positive results between CanTiCheck®, TiterCHEK®, and ImmunoComb® were minimal.


2011 ◽  
Vol 46 (8) ◽  
pp. 528-542 ◽  
Author(s):  
D.J. Hopkin ◽  
T. Lennon ◽  
J. El-Rimawi ◽  
V. Silberschmidt
Keyword(s):  

2018 ◽  
Vol 145 ◽  
pp. 137-152 ◽  
Author(s):  
Guobiao Lou ◽  
Chenghao Wang ◽  
Jian Jiang ◽  
Yaqiang Jiang ◽  
Liangwei Wang ◽  
...  

Author(s):  
Moncef Souissi

The capacity-to-torque ratio, Kt, has been used in the design of helical piles and anchors for over half a century. Numerous research efforts have been conducted to accurately predict this capaci-ty-to-torque ratio. However, almost of all these Kt factors are based on shaft geometry alone. The ca-pacity-to-torque ratio described herein was found to depend on the shaft diameter, shaft geometry, helix configuration, axial load direction, and installation torque. In this study, 799 full scale static load tests in compression and tension were conducted on helical piles of varying shaft diameters, shaft geometry, and helix configurations in different soil types (sand, clay, and weathered bedrock). The collected data were used to study the effect of these variables on the capacity-to-torque ratio and resulted in developing a more reliable capacity-to-torque ratio, Km, that considers the effect of the variables mentioned above. The study shows that the published Kt values in AC358 (ICC-ES Acceptance Criteria for Helical Piles Systems and Devices) underestimate the pile capacity at low torque and overestimate it at high torque. In addition, and based on probability analysis, the predicted capacity using the modified Km results in a higher degree of accuracy than the one based on the published Kt values in AC358.


2022 ◽  
Author(s):  
Andres I. Campbell ◽  
Helen C. Carson ◽  
Miriam De Soto ◽  
Michael Fiske ◽  
Luke Martin ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document