Controlled Nanocrystallization of NiTi Shape Memory Alloy by Laser Shock Peening

Author(s):  
Chang Ye ◽  
Gary J. Cheng

In this paper, partial amorphization of NiTi alloys by laser shock peening (LSP) is reported. The microstructure of NiTi after LSP was characterized by transmission electron microscopy (TEM). The amorphization mechanism was discussed in light of the high strain rate deformation characteristics of LSP. With subsequent controlled annealing after LSP, nanostructure with different grain size distribution was achieved.

2011 ◽  
Vol 84-85 ◽  
pp. 471-475 ◽  
Author(s):  
Wei Feng He ◽  
Yu Qin Li ◽  
Xiang Fan Nie ◽  
Rui Jun Liu ◽  
Qi Peng Li

In this paper, the microstructure and hardness of Ti-5Al-2Sn-2Zr-4Mo-4Cr titanium alloy with and without laser shock peening (LSP) were examined and compared. The titanium alloy samples were laser shock peened with different layers at the same power density. The microscopic structure after LSP are tested and analyzed by SEM and TEM. The results indicated that LSP changed the microstructure evidently. After 3 layers laser shock peening, there are nanocrystallization in the LSP zone. The shock wave provided high strain rate deformation and generated high-density dislocations in the material. Multiple severe plastic deformation caused by 3 to 5 LSP layers helped to rearrange the resultant dislocation, to form dislocation networks, leading to the formation of nanocrystallites. On the other hand, the microhardness across the polished surfaces of the titanium materials with and without LSP was measured. It is obvious that the laser shock peening improved the microhardness of the Ti-5Al-2Sn-2Zr-4Mo-4Cr for about 16% at the surface, and the affected depth is about 300 microns from the surface.


Author(s):  
Chang Ye ◽  
Gary J. Cheng

Laser shock induced plastic deformation has been used widely, such as laser shock peening (LSP), laser dynamic forming (LDF), and laser peen forming. These processes have been extensively studied both numerically and experimentally at room temperature. Recently, it is found that at elevated temperature, laser shock induced plastic deformation can generate better formability in LDF and enhanced mechanical properties in LSP. For example, warm laser shock peening leads to improved residual stress stability and better fatigue performance in aluminum alloys. There is a need to investigate the effects of elevated temperature on deformation behavior of metallic materials during shock induced high strain rate deformation. In this study, LSP of copper are selected to systematically study the effects of elevated temperature in shock induced high strain rate deformation. Finite element modeling (FEM) is used to predict the deformation behavior. The FEM simulation results of surface profile and residual stress distribution after LSP are validated by experimental results. The validated FEM simulation is used to study the effects of temperature on the plastic deformation behaviors during LSP, such as plastic affected zone, stress/strain distribution, and energy absorption.


Author(s):  
Magdalena Rozmus-Górnikowska ◽  
Jan Kusiński ◽  
Łukasz Cieniek ◽  
Jerzy Morgiel

AbstractThe influence of laser shock peening on the surface morphology and microstructure of single-crystal CMSX4 nickel-based superalloy was investigated by optical profilometry and atomic force microscopy, scanning and transmission electron microscopy as well as scanning-transmission electron microscopy in high-angle annular dark-field mode. Maps of chemical elements distribution in the laser-affected areas were determined using energy-dispersive X-ray spectroscopy. Furthermore, after the LSP, nanohardness tests were conducted on the cross section of the treated samples as well as the untreated material. Laser shock peening caused an ablation and melting of the surface layer and hence enlarged the surface roughness. Beneath the surface, in the laser shock-peened areas, severe distortion of the regular $$ {\gamma \mathord{\left/ {\vphantom {\gamma {\gamma^{\prime}}}} \right. \kern-0pt} {\gamma^{\prime}}} $$ γ / γ ′ microstructure was observed. In the surface layer, down to about 15 μm, shear bands of localized deformation were formed. Moreover, the result showed that the average nano-hardness value was obviously increased in the laser-treated region.


Materials ◽  
2020 ◽  
Vol 13 (17) ◽  
pp. 3849
Author(s):  
Yang Tang ◽  
MaoZhong Ge ◽  
Yongkang Zhang ◽  
Taiming Wang ◽  
Wen Zhou

In order to improve fatigue life of GH3039 superalloy, GH3039 superalloy sheets were treated by laser shock peening (LSP). The microstructure of GH3039 superalloy before and after LSP was characterized using an optical microscope, transmission electron microscope (TEM), and X-ray diffractometer. The fatigue life of the samples with and without LSP was investigated by fatigue experiments. Moreover, surface profile and residual stress were also examined. Experimental results indicated that the grains in the surface layer of the LSP sample were remarkably refined and reached the nanometer scale. The average surface roughness increased from 0.024 μm to 0.19 μm after LSP. The average fatigue life of the laser treated samples was 2.01 times larger than that of the untreated specimens. Additionally, mathematical statistical analysis confirms that LSP has a significant influence on the fatigue life of GH3039 superalloy. The improvement of fatigue life for the laser processed GH3039 superalloy was mainly attributed to compressive residual stress and grain refinement generated by LSP.


2013 ◽  
Vol 40 (11) ◽  
pp. 1103002
Author(s):  
夏伟光 Xia Weiguang ◽  
吴先前 Wu Xianqian ◽  
魏延鹏 Wei Yanpeng ◽  
黄晨光 Huang Chenguang ◽  
王曦 Wang Xi

Author(s):  
A. W. Warren ◽  
Y. B. Guo

Laser shock peening (LSP) is a potential fabrication process to pattern micron surface structures. The purpose of this paper is to model 3D shock pressure and dynamic mechanical behavior at high strain rates during laser patterning process. The 3D shock pressure was modeled using a user defined subroutine. The mechanical behavior at high strain rates is predicted by the Bammann, Chiesa, and Johnson (BCJ) model. A 3D FEA model of microscale LSP was created using the developed loading and material subroutines. For comparison, a direct input of measured material properties was also used. The results show that decreasing pulse time shifts the maximum transient stress from the surface to the subsurface. The rapid loading causes increased magnitudes of compressive stress throughout the depth. The BCJ model predicts higher stresses than the direct input method.


Author(s):  
Gary J. Cheng ◽  
M. Cai ◽  
Daniel Pirzada ◽  
Maxime J.-F. Guinel ◽  
M. Grant Norton

The response of solid to shock compression has been an interesting topic for more than a century. The present work is the first attempt to experimentally show that plastic deformation can be generated in brittle materials by a heat-assisted laser shock peening process, using silicon crystal as a sample material. Strong dislocation activity and large compressive residual stress are induced by this process. The dislocation structure is characterized with transmission electron microscopy and electron backscattered diffraction. The residual stress is measured using Raman scattering. This work presents a fundamental base for the application of laser shock peening in brittle materials to generate large compressive residual stress and plastic deformation for better mechanical properties, such as fatigue life and fracture toughness.


Sign in / Sign up

Export Citation Format

Share Document