Sustaining the Competitive Edge of Small to Medium Size Enterprises Through Innovative Manufacturing System Design

Author(s):  
Mohamed A. Gadalla

Increasing Small to Medium size Enterprises (SME’s) competitive edge requires continuously developing creative and novel methods and solutions. This paper presents a novel design for a manufacturing system named Smart Manufacturing Systems (SMS). The new design can be viewed as a modification to the Flexible Manufacturing System (FMS) to better suits continuously changing market conditions, which may lead a company to develop a more sustainable competitive edge. The new design address several issues in manufacturing system design that affect the competitiveness of the system such as: merger of different manufacturing processes, non-productive times, and to be able to performing economically under different market conditions.

2003 ◽  
Vol 02 (01) ◽  
pp. 71-87 ◽  
Author(s):  
A. OYARBIDE ◽  
T. S. BAINES ◽  
J. M. KAY ◽  
J. LADBROOK

Discrete event simulation is a popular aid for manufacturing system design; however in application this technique can sometimes be unnecessarily complex. This paper is concerned with applying an alternative technique to manufacturing system design which may well provide an efficient form of rough-cut analysis. This technique is System Dynamics, and the work described in this paper has set about incorporating the principles of this technique into a computer based modelling tool that is tailored to manufacturing system design. This paper is structured to first explore the principles of System Dynamics and how they differ from Discrete Event Simulation. The opportunity for System Dynamics is then explored, and this leads to defining the capabilities that a suitable tool would need. This specification is then transformed into a computer modelling tool, which is then assessed by applying this tool to model an engine production facility.


2019 ◽  
Author(s):  
Alireza Zarreh ◽  
HungDa Wan ◽  
Yooneun Lee ◽  
Can Saygin ◽  
Rafid Al Janahi

Maintenance is the core function to keep a system running and avoid failure. Total Productive Maintenance (TPM) has broadly utilized maintenance strategy to improve the customer's satisfaction and hence obtain a competitive advancement. However, the complexity of smart manufacturing systems due to the recent advancements, specifically the integration of internet and network systems with traditional manufacturing platforms, has made this function more challenging. The focus of this paper is to explain how cybersecurity could impact the TPM by affecting the overall equipment effectiveness (OEE) in a smart manufacturing system by providing a structured literature survey. First, it provides concerns on principle of TPM regarding cybersecurity in smart manufacturing systems. Then, it highlights the effect of a variety of cyber-physical threats on OEE, as a main key performance indicator of TPM and how differently they can reduce OEE. The countermeasures that could be considered to compensate for the negative impact of a cybersecurity threat on the overall effectiveness of the system also will be discussed. Finally, research gaps and challenges are identified to improve overall equipment effectiveness (OEE) in presence of cybersecurity threats in critical manufacturing industries.


Author(s):  
Yuanju Qu ◽  
Xinguo Ming ◽  
Yanrong Ni ◽  
Xiuzhen Li ◽  
Zhiwen Liu ◽  
...  

Enterprise information systems play a significant role in the Industry 4.0 era and are the crucial component to realize smart manufacturing systems. However, traditional enterprise information systems have some limits: (1) lack of complete information, (2) only satisfy limited business needs, and (3) lack of seamless integration, business intelligence, value-driven processes, and dynamic optimization. Clearly, the existing enterprise information systems are unable to satisfy the requirements for smart manufacturing systems: (1) autonomous operation, (2) sustainable values, and (3) self-optimization. In addition, smart manufacturing systems have become more efficient and effective, demanding for seamless information flow in enterprise information systems, knowledge, and data-driven accurately decision. Therefore, a new enterprise information systems framework is needed to bridge gaps between the requirements for traditional manufacturing system and smart manufacturing system. In this article, the integrative framework is proposed based on the business process reengineering, lean thinking, and intelligent management methods, with inclusion of six enterprise information systems aspects to provide upgrading guidelines from traditional manufacturing to smart manufacturing. The procedure of this method contains three steps: (1) it identifies requirements and acquires best practices using AS-IS model, (2) it redesigns six aspects of enterprise information systems using TO-BE model, and (3) it proposes a new enterprise information systems framework. Finally, the proposed framework is validated by real cases.


Author(s):  
David S. Cochran ◽  
Steve Hendricks ◽  
Jason Barnes ◽  
Zhuming Bi

This paper offers an extension of axiomatic design theory to ensure that leaders, managers, and engineers can sustain manufacturing systems throughout the product lifecycle. The paper has three objectives: to provide a methodology for designing and implementing manufacturing systems to be sustainable in the context of the enterprise, to define the use of performance metrics and investment criteria that sustain manufacturing, and to provide a systems engineering approach that enables continuous improvement (CI) and adaptability to change. The systems engineering methodology developed in this paper seeks to replace the use of the word “lean” to describe the result of manufacturing system design. Current research indicates that within three years of launch, ninety percent of “lean implementations” fail. This paper provides a methodology that leaders, managers, and engineers may use to sustain their manufacturing system design and implementation.


Author(s):  
S. J. Pavnaskar ◽  
D. Weaver ◽  
J. K. Gershenson

Lean has become a “must-use” philosophy for businesses today. Lean manufacturing focuses on the elimination of waste in manufacturing operations. Similarly, companies have started using lean engineering to eliminate wastes from their engineering processes. Both lean manufacturing and lean engineering yield dramatic improvements in quality, cost, and delivery. However, the philosophy of lean (manufacturing and engineering) revolves around the continuous improvement of existing processes. Costs associated with continuous improvement can be significantly reduced by incorporating “lean” considerations when designing a product, process, or manufacturing system. This is known as design for lean manufacturing (DfLM). DfLM guides the design of a product, process, or a manufacturing system to enable lean operations when in production, just as design for assembly (DFA) guides the design of a product to allow easier assembly during production. Currently, there are no guidelines that would help a product or process designer in considering to lean operations during design. Note that usage of the word “product” in this paper must be interpreted in a literary sense and not as a “widget.” The “product” of a manufacturing engineering process is a complete manufacturing system. In this paper, we consider manufacturing system design and propose a novel set of structured DfLM guidelines for designing a manufacturing system. These guidelines will be a valuable resource for manufacturing engineers to guide manufacturing system design for new products to enable lean operations once the system is in production. DfLM guidelines for system design also will help plant engineers and rapid continuous improvement managers to assess existing manufacturing systems and identify and prioritize improvement efforts. The proposed DfLM guidelines are then validated for accuracy, completeness, and redundancy by using them to evaluate an existing benchmark manufacturing system. The initial DfLM guidelines show promise for use in designing manufacturing systems that are easy to manage, flexible, safe, build quality into the products, optimize material flow, fully utilize all resources, maximize throughput, and continuously produce what the customer wants just in time. Similar guidelines can be proposed for product and process design to further enhance the efficiency of operations and reduce the overhead of continuous improvement efforts.


Sign in / Sign up

Export Citation Format

Share Document