An integrated framework of enterprise information systems in smart manufacturing system via business process reengineering

Author(s):  
Yuanju Qu ◽  
Xinguo Ming ◽  
Yanrong Ni ◽  
Xiuzhen Li ◽  
Zhiwen Liu ◽  
...  

Enterprise information systems play a significant role in the Industry 4.0 era and are the crucial component to realize smart manufacturing systems. However, traditional enterprise information systems have some limits: (1) lack of complete information, (2) only satisfy limited business needs, and (3) lack of seamless integration, business intelligence, value-driven processes, and dynamic optimization. Clearly, the existing enterprise information systems are unable to satisfy the requirements for smart manufacturing systems: (1) autonomous operation, (2) sustainable values, and (3) self-optimization. In addition, smart manufacturing systems have become more efficient and effective, demanding for seamless information flow in enterprise information systems, knowledge, and data-driven accurately decision. Therefore, a new enterprise information systems framework is needed to bridge gaps between the requirements for traditional manufacturing system and smart manufacturing system. In this article, the integrative framework is proposed based on the business process reengineering, lean thinking, and intelligent management methods, with inclusion of six enterprise information systems aspects to provide upgrading guidelines from traditional manufacturing to smart manufacturing. The procedure of this method contains three steps: (1) it identifies requirements and acquires best practices using AS-IS model, (2) it redesigns six aspects of enterprise information systems using TO-BE model, and (3) it proposes a new enterprise information systems framework. Finally, the proposed framework is validated by real cases.

2019 ◽  
Author(s):  
Alireza Zarreh ◽  
HungDa Wan ◽  
Yooneun Lee ◽  
Can Saygin ◽  
Rafid Al Janahi

Maintenance is the core function to keep a system running and avoid failure. Total Productive Maintenance (TPM) has broadly utilized maintenance strategy to improve the customer's satisfaction and hence obtain a competitive advancement. However, the complexity of smart manufacturing systems due to the recent advancements, specifically the integration of internet and network systems with traditional manufacturing platforms, has made this function more challenging. The focus of this paper is to explain how cybersecurity could impact the TPM by affecting the overall equipment effectiveness (OEE) in a smart manufacturing system by providing a structured literature survey. First, it provides concerns on principle of TPM regarding cybersecurity in smart manufacturing systems. Then, it highlights the effect of a variety of cyber-physical threats on OEE, as a main key performance indicator of TPM and how differently they can reduce OEE. The countermeasures that could be considered to compensate for the negative impact of a cybersecurity threat on the overall effectiveness of the system also will be discussed. Finally, research gaps and challenges are identified to improve overall equipment effectiveness (OEE) in presence of cybersecurity threats in critical manufacturing industries.


Author(s):  
Boonserm (Serm) Kulvatunyou ◽  
Nenad Ivezic ◽  
Vijay Srinivasan

Engineering information systems play an important role in the current era of digitization of manufacturing, which is a key component to enable smart manufacturing. Traditionally, these engineering information systems spanned the lifecycle of a product by providing interoperability of software subsystems through a combination of open and proprietary exchange of data. But research and development efforts are underway to replace this paradigm with engineering information services that can be composed dynamically to meet changing needs in the operation of smart manufacturing systems. This paper describes the opportunities and challenges in architecting such engineering information services and composing them to enable smarter manufacturing.


2017 ◽  
Vol 02 (02) ◽  
pp. 1750010 ◽  
Author(s):  
Hong Wang

Enterprise systems (ES) or enterprise information systems (EIS) concepts have been researched and utilized for decades, but it was not until the past decade when they became popular in not only the areas of information systems and computer sciences, but also in those of business process management, business process reengineering, industrial engineering, systems engineering, business intelligence, government administration, e-commerce and e-business, and others. The growing needs of using ES to solve real-world problems require intensive study of ES-related techniques and applications. This study explores those ES techniques and their applications in the aerospace industry. Furthermore, an application case of information integration in spacecraft state detection is demonstrated.


Author(s):  
Benjamin Y. Choo ◽  
Stephen C. Adams ◽  
Brian A. Weiss ◽  
Jeremy A. Marvel ◽  
Peter A. Beling

The Adaptive Multi-scale Prognostics and Health Management (AM-PHM) is a methodology designed to enable PHM in smart manufacturing systems. In application, PHM information is not yet fully utilized in higher-level decisionmaking in manufacturing systems. AM-PHM leverages and integrates lower-level PHM information such as from a machine or component with hierarchical relationships across the component, machine, work cell and assembly line levels in a manufacturing system. The AM-PHM methodology enables the creation of actionable prognostic and diagnostic intelligence up and down the manufacturing process hierarchy. Decisions are then made with the knowledge of the current and projected health state of the system at decision points along the nodes of the hierarchical structure. To overcome the issue of exponential explosion of complexity associated with describing a large manufacturing system, the AM-PHM methodology takes a hierarchical Markov Decision Process (MDP) approach into describing the system and solving for an optimized policy. A description of the AM-PHM methodology is followed by a simulated industry-inspired example to demonstrate the effectiveness of AM-PHM.


Author(s):  
Mohamed A. Gadalla

Increasing Small to Medium size Enterprises (SME’s) competitive edge requires continuously developing creative and novel methods and solutions. This paper presents a novel design for a manufacturing system named Smart Manufacturing Systems (SMS). The new design can be viewed as a modification to the Flexible Manufacturing System (FMS) to better suits continuously changing market conditions, which may lead a company to develop a more sustainable competitive edge. The new design address several issues in manufacturing system design that affect the competitiveness of the system such as: merger of different manufacturing processes, non-productive times, and to be able to performing economically under different market conditions.


2018 ◽  
Vol 14 (12) ◽  
pp. 1638-1659
Author(s):  
Jalal Kiswani ◽  
Muhanna Muhanna ◽  
Abdallah Qusef

Machines ◽  
2021 ◽  
Vol 9 (10) ◽  
pp. 208
Author(s):  
Zhuming Bi ◽  
Wen-Jun Zhang ◽  
Chong Wu ◽  
Chaomin Luo ◽  
Lida Xu

In a traditional system paradigm, an enterprise reference model provides the guide for practitioners to select manufacturing elements, configure elements into a manufacturing system, and model system options for evaluation and comparison of system solutions against given performance metrics. However, a smart manufacturing system aims to reconfigure different systems in achieving high-level smartness in its system lifecycle; moreover, each smart system is customized in terms of the constraints of manufacturing resources and the prioritized performance metrics to achieve system smartness. Few works were found on the development of systematic methodologies for the design of smart manufacturing systems. The novel contributions of the presented work are at two aspects: (1) unified definitions of digital functional elements and manufacturing systems have been proposed; they are generalized to have all digitized characteristics and they are customizable to any manufacturing system with specified manufacturing resources and goals of smartness and (2) a systematic design methodology has been proposed; it can serve as the guide for designs of smart manufacturing systems in specified applications. The presented work consists of two separated parts. In the first part of paper, a simplified definition of smart manufacturing (SM) is proposed to unify the diversified expectations and a newly developed concept digital triad (DT-II) is adopted to define a generic reference model to represent essential features of smart manufacturing systems. In the second part of the paper, the axiomatic design theory (ADT) is adopted and expanded as the generic design methodology for design, analysis, and assessment of smart manufacturing systems. Three case studies are reviewed to illustrate the applications of the proposed methodology, and the future research directions towards smart manufacturing are discussed as a summary in the second part.


Processes ◽  
2021 ◽  
Vol 9 (1) ◽  
pp. 92
Author(s):  
Zeinab Shahbazi ◽  
Yung-Cheol Byun

The modern industry, production, and manufacturing core is developing based on smart manufacturing (SM) systems and digitalization. Smart manufacturing’s practical and meaningful design follows data, information, and operational technology through the blockchain, edge computing, and machine learning to develop and facilitate the smart manufacturing system. This process’s proposed smart manufacturing system considers the integration of blockchain, edge computing, and machine learning approaches. Edge computing makes the computational workload balanced and similarly provides a timely response for the devices. Blockchain technology utilizes the data transmission and the manufacturing system’s transactions, and the machine learning approach provides advanced data analysis for a huge manufacturing dataset. Regarding smart manufacturing systems’ computational environments, the model solves the problems using a swarm intelligence-based approach. The experimental results present the edge computing mechanism and similarly improve the processing time of a large number of tasks in the manufacturing system.


Sign in / Sign up

Export Citation Format

Share Document