Edge Trimming of CFRP Composites Using Rotary Ultrasonic Machining: Effects of Ultrasonic Vibration

Author(s):  
Hui Wang ◽  
Fuda Ning ◽  
Yingbin Hu ◽  
Yuanchen Li ◽  
Xinlin Wang ◽  
...  

Carbon fiber reinforced plastic (CFRP) composites have many excellent properties, which make them be widely used in many applications. After demolding processes, CFRP composites still need additional machining processes to achieve final shape with desired tolerances. Edge trimming is the first machining process performed on composites after their molding processes. Because of carbon fibers’ abrasive properties as well as CFRPs’ properties of inhomogeneity and anisotropy, CFRPs are regarded as the difficult-to-cut materials. Many problems are generated in traditional machining processes. To reduce and solve the problems, edge trimming using rotary ultrasonic machining (RUM) is reported in this manuscript. This paper, for the first time, makes the comparisons on machining performance (cutting forces, torque, and surface roughness) between edge trimming processes with and without ultrasonic vibration assistance. To better understand effects of ultrasonic vibration on such a process, machining mechanisms are also obtained and analyzed. This paper will provide guides for RUM edge trimming of CFRP composites.

Author(s):  
Palamandadige Fernando ◽  
Meng Zhang ◽  
Zhijian Pei

Drilling is the most common machining practice conducted on carbon fiber reinforced plastics (CFRP), which is challenging to conventional machining processes, such as twist drilling. Rotary ultrasonic machining (RUM) is a non-traditional machining process that has been successfully used to drill CFRP, many other brittle (e.g. silicon, ceramics), and ductile (e.g. titanium alloy (Ti-6Al-4V), stainless steel) materials. RUM is superior to twist drilling on CFRP hole-making in many aspects: lower cutting force and torque, better surface finish, less potential for delamination, and better tool life. Since RUM is a hybrid process of abrasive grinding and ultrasonic machining, it is important to study the effects of abrasive properties on output variables. This paper for the first time investigates the effects of abrasive properties (abrasive size and abrasive concentration) on output variables (cutting force, torque, and surface roughness) in RUM of CFRP. It is found that cutting force increased as abrasive size increased and as abrasive concentration increased; however, abrasive properties did not have significant effects on surface roughness of the machined holes.


Author(s):  
Fuda Ning ◽  
Weilong Cong

Drilling is one of very important machining processes in many applications of carbon fiber reinforced plastic (CFRP) composites. Rotary ultrasonic machining (RUM) has been successfully used in drilling of CFRP composites to overcome poor machinability. Cutting force is one of the most important output variables for evaluating drilling process, since it will greatly influence cutting temperature, tool wear, and surface conditions. Currently, there are no reported investigations on effect of input variables on cutting force using design of experiment (DOE) method in RUM of CFRP composites. Five-variable two-level full factorial design has been conducted to study cutting force based on a mechanistic predictive model in RUM of CFRP composites. Main effects as well as interaction effects of five process variables (vibration amplitude, tool rotation speed, feedrate, abrasive size, and abrasive concentration) on cutting force are revealed.


2019 ◽  
Vol 8 (2) ◽  
pp. 285-292
Author(s):  
Simon Kimme ◽  
Nessma Hafez ◽  
Christian Titsch ◽  
Jonas Maximilian Werner ◽  
Andreas Nestler ◽  
...  

Abstract. The application of ultrasonic vibration assistance in machining offers many benefits over conventional machining. In some machining processes, like the generation of geometrically defined microstructures by cutting, the interaction of the system components and the machining process can be particularly crucial with respect to the production result. Monitoring of ultrasonic vibration-assisted machining in terms of the in-process measurement of frequency and amplitude is currently realized by measurement inside the actuator; thus, measurement is presently undertaken relatively far away from the cutting process. In this paper an in-process measurement set-up based on strain gauges positioned close to the cutting edges is presented. It is used to investigate the induced vibration in the ultrasonic horn. Experiments on machine samples with and without ultrasonic vibration assistance are performed using the in-process measurement set-up described. The results of the strain gauges are analysed in comparison to internal feedback signal and surface measurements. The experiments show the high sensitivity of the measurement set-up presented and a huge gain of information compared with the conventional measurement approach. This enables improved controllability of the excited mode shapes as well as in-process adjustment of the ultrasonic vibration frequency and amplitude for the manufacturing of defined microstructures.


Sign in / Sign up

Export Citation Format

Share Document