The Effect of the Spectral Distribution of Wave Energy on the Performance of a Bottom Hinged Flap Type Wave Energy Converter

Author(s):  
D. Clabby ◽  
A. Henry ◽  
M. Folley ◽  
T. Whittaker

The power output from a wave energy converter is typically predicted using experimental and/or numerical modelling techniques. In order to yield meaningful results the relevant characteristics of the device, together with those of the wave climate must be modelled with sufficient accuracy. The wave climate is commonly described using a scatter table of sea states defined according to parameters related to wave height and period. These sea states are traditionally modelled with the spectral distribution of energy defined according to some empirical formulation. Since the response of most wave energy converters vary at different frequencies of excitation, their performance in a particular sea state may be expected to depend on the choice of spectral shape employed rather than simply the spectral parameters. Estimates of energy production may therefore be affected if the spectral distribution of wave energy at the deployment site is not well modelled. Furthermore, validation of the model may be affected by differences between the observed full scale spectral energy distribution and the spectrum used to model it. This paper investigates the sensitivity of the performance of a bottom hinged flap type wave energy converter to the spectral energy distribution of the incident waves. This is investigated experimentally using a 1:20 scale model of Aquamarine Power’s Oyster wave energy converter, a bottom hinged flap type device situated at the European Marine Energy Centre (EMEC) in approximately 13m water depth. The performance of the model is tested in sea states defined according to the same wave height and period parameters but adhering to different spectral energy distributions. The results of these tests show that power capture is reduced with increasing spectral bandwidth. This result is explored with consideration of the spectral response of the device in irregular wave conditions. The implications of this result are discussed in the context of validation of the model against particular prototype data sets and estimation of annual energy production.

2021 ◽  
Vol 9 (3) ◽  
pp. 309
Author(s):  
James Allen ◽  
Gregorio Iglesias ◽  
Deborah Greaves ◽  
Jon Miles

The WaveCat is a moored Wave Energy Converter design which uses wave overtopping discharge into a variable v-shaped hull, to generate electricity through low head turbines. Physical model tests of WaveCat WEC were carried out to determine the device reflection, transmission, absorption and capture coefficients based on selected wave conditions. The model scale was 1:30, with hulls of 3 m in length, 0.4 m in height and a freeboard of 0.2 m. Wave gauges monitored the surface elevation at discrete points around the experimental area, and level sensors and flowmeters recorded the amount of water captured and released by the model. Random waves of significant wave height between 0.03 m and 0.12 m and peak wave periods of 0.91 s to 2.37 s at model scale were tested. The wedge angle of the device was set to 60°. A reflection analysis was carried out using a revised three probe method and spectral analysis of the surface elevation to determine the incident, reflected and transmitted energy. The results show that the reflection coefficient is highest (0.79) at low significant wave height and low peak wave period, the transmission coefficient is highest (0.98) at low significant wave height and high peak wave period, and absorption coefficient is highest (0.78) when significant wave height is high and peak wave period is low. The model also shows the highest Capture Width Ratio (0.015) at wavelengths on the order of model length. The results have particular implications for wave energy conversion prediction potential using this design of device.


2005 ◽  
Vol 128 (1) ◽  
pp. 56-64 ◽  
Author(s):  
Gaelle Duclos ◽  
Aurelien Babarit ◽  
Alain H. Clément

Considered as a source of renewable energy, wave is a resource featuring high variability at all time scales. Furthermore wave climate also changes significantly from place to place. Wave energy converters are very often tuned to suit the more frequent significant wave period at the project site. In this paper we show that optimizing the device necessitates accounting for all possible wave conditions weighted by their annual occurrence frequency, as generally given by the classical wave climate scatter diagrams. A generic and very simple wave energy converter is considered here. It is shown how the optimal parameters can be different considering whether all wave conditions are accounted for or not, whether the device is controlled or not, whether the productive motion is limited or not. We also show how they depend on the area where the device is to be deployed, by applying the same method to three sites with very different wave climate.


Author(s):  
Tunde O. Aderinto ◽  
Francisco Haces-Fernandez ◽  
Hua Li

Although theoretical available wave energy is higher than most of ocean energy sources, the commercial utilization of wave energy is much slower than other ocean energy sources. The difficulty of integration with the electrical grid system and the challenges of the installation, operation and maintenance of large energy generation and transmission systems are the major reasons. Even though there are successfully tested models of wave energy converters, the fact that wave energy is directly affected by wave height and wave period makes the actual wave energy output with high variation and difficult to be predicted. And most of the previous studies on wave energy and its utilization have focused on the large scale energy production that can be integrated into a power grid system. In this paper, the authors identify and discuss stand-alone wave energy converter systems and facilities that are not connected to the electricity grid with focus on small scale wave energy systems as potential source of energy. For the proper identification, qualification and quantification of wave energy resource potential, wave properties such as wave height and period need to be characterized. This is used to properly determine and predict the probability of the occurrence of these wave properties at particular locations, which enables the choice of product design, installation, operation and maintenance to effectively capture wave energy. Meanwhile, the present technologies available for wave energy converters can be limited by location (offshore, nearshore or shoreline). Therefore, the potential applications of small scale stand-alone wave energy converter are influenced by the demand, location of the need and the appropriate technology to meet the identified needs. The paper discusses the identification of wave energy resource potentials, the location and appropriate technology suitable for small scale wave energy converter. Two simplified wave energy converter designs are created and simulated under real wave condition in order to estimate the energy production of each design.


2020 ◽  
Author(s):  
Iain Fairley ◽  
Matthew Lewis ◽  
Bryson Robertson ◽  
Mark Hemer ◽  
Ian Masters ◽  
...  

<p>Understanding and classification of the global wave energy resource is vital to facilitate wave energy converter technology development and global roll-out of this promising renewable energy technology. To date, many wave energy converters have been developed based on Northern European wave climates; these are not representative of wave climates worldwide and may not be the best for large scale energy extraction. Classification of resources will highlight alternative wave resource types that may prove fruitful for deployment of future technologies; equally it will enable existing technology to define regions worthy of site exploration. Therefore k-means clustering is used here to classify the global resource from a data-driven, device agnostic perspective.</p><p>Parameters relevant to energy extraction (significant wave height, peak wave period, extreme wave height, spectral and directional properties) were extracted from the ECMWF ERA5 reanalysis dataset and used to split the global resource into 6 classes. Only areas within 3 degrees of land (feasible energy transport to user) were considered. The 6 classes returned by the analysis consisted of: 1) low energy high variability areas in enclosed seas; 2) low energy moderate variability areas in semi-enclosed seas and sheltered ocean coasts; 3) moderate energy areas, largely on eastern oceanic coastlines and influenced by local storm activity; 4) moderate energy areas primarily influenced by long period swell and largely on western oceanic coastlines; 5) higher energy areas, with variable conditions, primarily in the northern hemisphere; 6) highest energy areas, primarily on the tips of continents in the southern hemisphere. Consideration of device power matrices show that existing devices only perform well in classes 5 and 6, despite these areas having limited global coverage, which suggests devices should be developed for lower energy classes.</p><p>To refine global roll-out planning for existing devices, based on a request from a wave energy converter developer, a second classification is currently being developed with two additional constraints on the areas tested. These constraints are excluding any areas with a mean wave power of less than 15 kW/m (an often-used value for the lower power limit for commercial viability) and a maintenance constraint whereby wave heights must drop below 3m for a minimum of 48hrs per month. These newer results will be presented at the annual assembly and contrasted with our more device agnostic classification.</p>


Energy ◽  
2017 ◽  
Vol 135 ◽  
pp. 303-316 ◽  
Author(s):  
V. Ramos ◽  
M. López ◽  
F. Taveira-Pinto ◽  
P. Rosa-Santos

2014 ◽  
Vol 507 ◽  
pp. 480-485
Author(s):  
Javier Aparisi ◽  
Jose González ◽  
Bernabé Hernandis

The development and exploitation of new sources of clean energy that do not depend on traditional sources based on the use of fossil fuels, is the focus of this research, which starts with the optimization of an invention capable of transforming a reciprocating rectilinear motion into continuous circular motion in a very efficient way, to be used in the development of a Wave Energy Converter (WEC), capable of operating with low wave height and taking advantage of the oscillating movement of the waves both when rising, and when lowering, unlike other similar devices that harness it only in one way.


Author(s):  
Marie-Aure´lie Kerbiriou ◽  
Marc Prevosto ◽  
Christophe Maisondieu ◽  
Aure´lien Babarit ◽  
Alain Cle´ment

Sea-states are usually described by a single set of 5 parameters, no matter the actual number of wave systems they contain. We present an original numerical method to extract from directional spectra the significant systems constituting of a complex sea-state. An accurate description of the energy distribution is then given by multiple sets of parameters. We use these results to assess the wave climatology in the Bay of Biscay and to estimate the power harnessable in this area by a particular Wave Energy Converter, the SEAREV. Results show that the fine description of sea-states yields a better assessment of the instantaneous device response. The discrepancy between the classical and multi-sets descriptions show that the new one is preferable for the assessment of harnessable power and for device design.


Sign in / Sign up

Export Citation Format

Share Document