Influence of an Improved Sea-State Description on a Wave Energy Converter Production

Author(s):  
Marie-Aure´lie Kerbiriou ◽  
Marc Prevosto ◽  
Christophe Maisondieu ◽  
Aure´lien Babarit ◽  
Alain Cle´ment

Sea-states are usually described by a single set of 5 parameters, no matter the actual number of wave systems they contain. We present an original numerical method to extract from directional spectra the significant systems constituting of a complex sea-state. An accurate description of the energy distribution is then given by multiple sets of parameters. We use these results to assess the wave climatology in the Bay of Biscay and to estimate the power harnessable in this area by a particular Wave Energy Converter, the SEAREV. Results show that the fine description of sea-states yields a better assessment of the instantaneous device response. The discrepancy between the classical and multi-sets descriptions show that the new one is preferable for the assessment of harnessable power and for device design.

2021 ◽  
Author(s):  
Mojtaba Kamarlouei ◽  
Thiago S. Hallak ◽  
Jose F. Gaspar ◽  
Miguel Calvário ◽  
C. Guedes Soares

Abstract This paper presents the adaptation of a torus wave energy converter prime mover to an onshore or nearshore fixed platform, by a hinged arm. An optimization code is developed to obtain the best torus and arm geometry, as well as the power take-off parameters, taking as objective function the maximization of total wave absorbed power. In this paper, the power take-off system is modelled as a simplified damper and spring system, where the parameters are optimized for the phase control of the wave energy converter in each sea state, whereas the optimization process is performed with a genetic algorithm. Finally, the optimal result for the productive sea state indicates that the absorbed power is relatively considerable while a better survivability performance is expected from a torus wave energy converter compared to a conventional truncated prime mover.


2020 ◽  
Vol 8 (4) ◽  
pp. 289 ◽  
Author(s):  
Vincent S. Neary ◽  
Seongho Ahn ◽  
Bibiana E. Seng ◽  
Mohammad Nabi Allahdadi ◽  
Taiping Wang ◽  
...  

Best practices and international standards for determining n-year return period extreme wave (sea states) conditions allow wave energy converter designers and project developers the option to apply simple univariate or more complex bivariate extreme value analysis methods. The present study compares extreme sea state estimates derived from univariate and bivariate methods and investigates the performance of spectral wave models for predicting extreme sea states at buoy locations within several regional wave climates along the US East and West Coasts. Two common third-generation spectral wave models are evaluated, a WAVEWATCH III® model with a grid resolution of 4 arc-minutes (6–7 km), and a Simulating WAves Nearshore model, with a coastal resolution of 200–300 m. Both models are used to generate multi-year hindcasts, from which extreme sea state statistics used for wave conditions characterization can be derived and compared to those based on in-situ observations at National Data Buoy Center stations. Comparison of results using different univariate and bivariate methods from the same data source indicates reasonable agreement on average. Discrepancies are predominantly random. Large discrepancies are common and increase with return period. There is a systematic underbias for extreme significant wave heights derived from model hindcasts compared to those derived from buoy measurements. This underbias is dependent on model spatial resolution. However, simple linear corrections can effectively compensate for this bias. A similar approach is not possible for correcting model-derived environmental contours, but other methods, e.g., machine learning, should be explored.


Author(s):  
Rickard Ekström ◽  
Venugopalan Kurupath ◽  
Cecilia Boström ◽  
Rafael Waters ◽  
Mats Leijon

A wave energy converter (WEC) based on a linear generator and a point-absorbing buoy has been developed at Uppsala University. Interconnecting an array of WECs in parallel requires a point of common coupling, such as a common dc-bus. The dc voltage level seen by the generator is directly linked to the electromagnetic damping of the generator. A lower dc-level results in a higher damping factor and is important for increased absorption of the wave power. The drawback is increased losses in generator windings and cable resistance. There will be an optimal dc-level for maximum power output. This is a function of not only generator and buoy characteristics, but the current sea state. Experimental results of the full-scale system have been carried out, and used as validation of a simulation model of the system. The model is then used to evaluate how the dc-level seen by the generator influence the power output. The results indicate that higher dc-levels should be used at higher sea states, and power output may vary by up to a factor five depending on which dc-level is chosen.


Author(s):  
D. Clabby ◽  
A. Henry ◽  
M. Folley ◽  
T. Whittaker

The power output from a wave energy converter is typically predicted using experimental and/or numerical modelling techniques. In order to yield meaningful results the relevant characteristics of the device, together with those of the wave climate must be modelled with sufficient accuracy. The wave climate is commonly described using a scatter table of sea states defined according to parameters related to wave height and period. These sea states are traditionally modelled with the spectral distribution of energy defined according to some empirical formulation. Since the response of most wave energy converters vary at different frequencies of excitation, their performance in a particular sea state may be expected to depend on the choice of spectral shape employed rather than simply the spectral parameters. Estimates of energy production may therefore be affected if the spectral distribution of wave energy at the deployment site is not well modelled. Furthermore, validation of the model may be affected by differences between the observed full scale spectral energy distribution and the spectrum used to model it. This paper investigates the sensitivity of the performance of a bottom hinged flap type wave energy converter to the spectral energy distribution of the incident waves. This is investigated experimentally using a 1:20 scale model of Aquamarine Power’s Oyster wave energy converter, a bottom hinged flap type device situated at the European Marine Energy Centre (EMEC) in approximately 13m water depth. The performance of the model is tested in sea states defined according to the same wave height and period parameters but adhering to different spectral energy distributions. The results of these tests show that power capture is reduced with increasing spectral bandwidth. This result is explored with consideration of the spectral response of the device in irregular wave conditions. The implications of this result are discussed in the context of validation of the model against particular prototype data sets and estimation of annual energy production.


Author(s):  
Senu Sirnivas ◽  
Yi-Hsiang Yu ◽  
Matthew Hall ◽  
Bret Bosma

A wave-energy-converter-specific time-domain modeling method (WEC-Sim) was coupled with a lumped-mass-based mooring model (MoorDyn) to improve its mooring dynamics modeling capability. This paper presents a verification and validation study on the coupled numerical method. First, a coupled model was built to simulate a 1/25 model scale floating power system connected to a traditional three-point catenary mooring with an angle of 120 between the lines. The body response and the tension force on the mooring lines at the fairlead in decay tests and under regular and irregular waves were examined. To validate and verify the coupled numerical method, the simulation results were compared to the measurements from a wave tank test and a commercial code (OrcaFlex). Second, a coupled model was built to simulate a two-body point absorber system with a chain-connected catenary system. The influence of the mooring connection on the point absorber was investigated. Overall, the study showed that the coupling of WEC-Sim and the MoorDyn model works reasonably well for simulating a floating system with practical mooring designs and predicting the corresponding dynamic loads on the mooring lines. Further analyses on improving coupling efficiency and the feasibility of applying the numerical method to simulate WEC systems with more complex mooring configuration are still needed.


Author(s):  
Eric Thacher ◽  
Helen Bailey ◽  
Bryson Robertson ◽  
Scott Beatty ◽  
Jason Goldsworthy ◽  
...  

In the field of wave energy converter control, high fidelity numerical models have become the predominant tool for the development of accurate and comprehensive control strategies. In this study, a numerical model of a novel wave energy converter, employing a pneumatic power take-off, is created to provide a low-cost method for the development of a power-maximizing control strategy. Device components and associated architectures are developed in the time domain solvers Proteus DS and MATLAB/Simulink. These two codes are dynamically coupled at run time to produce a complete six degree of freedom, time domain simulation of the converter. Utilizing this numerical framework, a genetic algorithm optimization procedure is implemented to optimally select eight independent parameters governing the PTO geometry. Optimality is measured in terms of estimated annual energy production at a specific deployment location off the West Coast of Canada. The optimization exercise is one layer of PTO force control — the parameters selected are seen to provide significant improvements in the annual power output, while also smoothing the WEC power output on both a sea-state by sea-state and wave-by-wave basis.


Author(s):  
Rickard Ekström ◽  
Venugopalan Kurupath ◽  
Cecilia Boström ◽  
Rafael Waters ◽  
Olle Svensson ◽  
...  

A Wave Energy Converter (WEC) based on a linear generator and a point-absorbing buoy has been developed at Uppsala University. Interconnecting an array of WECs in parallel requires a point of common coupling, such as a common DC-bus. The DC voltage level seen by the generator is directly linked to the electromagnetic damping of the generator. A lower DC-level results in a higher damping factor and is important for increased absorption of the wave power. The drawback is increased losses in generator windings and cable resistance. There will be an optimal DC-level for maximum power output. This is a function of not only generator and buoy characteristics, but the current sea state. Experimental results of the full-scale system have been carried out, and used as validation of a simulation model of the system. The model is then used to evaluate how the DC-level seen by the generator influence the power output. The results indicate that higher DC-levels should be used at higher sea states, and power output may vary by up to a factor five depending on which DC-level is chosen.


2021 ◽  
pp. 32-43
Author(s):  
Augusto Hack da Silva Koch ◽  
Maycon da Silveira Paiva ◽  
Caroline Barbosa Monteiro ◽  
Phelype Haron Oleinik ◽  
Liércio André Isoldi ◽  
...  

The purpose of this study is to computationally analyze the hydropneumatic power available in the air duct of an Oscillating Water Column (OWC) Wave Energy Converter (WEC) device when subject to realistic sea state data (irregular waves) and when submitted to the regular waves representative of this sea state. The OWC WEC is mainly composed of a hydropneumatic chamber and an air duct where a turbine and electric generator are coupled. The chamber is open below the free surface while the duct is open to the atmosphere. The oscillating movement of the water-free surface inside the chamber causes the air to flow, moving the turbine and generating electricity. To execute this study, a bi-dimensional computational model was considered and numerical simulations of wave generation were carried out using ANSYS Fluent, which is a Computational Fluid Dynamics (CFD) software based on the Finite Volume Method (FVM). The Volume of Fluid (VOF) multi-phase model was applied in the treatment of the water-air interaction. To evaluate the average hydropneumatic power available in the duct, the static pressure, velocity, and air mass flow rate were monitored. The results were analyzed, showing that the available power is 250% greater when the device is subject to realistic irregular waves rather than subject to representative regular waves.


Sign in / Sign up

Export Citation Format

Share Document