A 3-DOF Ship-Borne Stabilization Platform

Author(s):  
Wang Xiao ◽  
Li Weijia ◽  
Zhou Kai

In this research a 3-DOF parallel mechanism with anti-torsion arm is designed as a ship-borne stabilization platform. For adapting to the serious sea conditions, such platform needs to couple the advantages of good mechanism stiffness, high bearing capacity and large workspace. Accordingly, a kinetics and kinematics based nonlinear optimization model is developed for the optimal design of parallel mechanism. The model is applied to synthetically optimize the workspace, stiffness requirement and kinematic performance of the 3-DOF parallel mechanism. An acceleration genetic algorithm is employed to seek the global optimization solutions of nonlinear optimization model. The solution results indicate that the designed ship-borne stabilization platform can not only provide a good performance, but also meet the design requirements.

2011 ◽  
Vol 480-481 ◽  
pp. 1055-1060
Author(s):  
Guang Hua Wu ◽  
Lie Hang Gong ◽  
Xin Wei Ji ◽  
Zhong Jun Wu ◽  
Yong Jun Gai

The methodology of the optimal design for the 6-UPU parallel mechanism (PM) is presented based on genetic algorithms. The optimal index which expressed by Jacobian matrix of the PM is first deduced. An optimal model is established, in which the kinematic dexterity of a parallel mechanism is considered as the objective function. The design space, the limiting length of the electric actuators and the limit angles of universal joints are taken as constraints. The real-encoding genetic algorithm is applied to the optimal design of a parallel mechanism, which is proved the validity and advantage for the optimal design of a similar mechanism.


2011 ◽  
Vol 130-134 ◽  
pp. 3229-3232
Author(s):  
Li Ping Zheng ◽  
Hai Yu ◽  
Ju Feng Dou

The process of designing a dry-type air-cored reactor is one repeated way of computing and regulating the correlated parameters, and it is very complex and time-consuming. Therefore, Genetic Algorithm is introduced in this paper, for the purpose of reducing error between total inductive potential of coils and the terminal voltage, we set up the optimization model of an air-cored reactor, and the Improved Genetic Algorithm is adopted to make an optimal design for the air-cored reactor. The results show that designed accuracy can be greatly improved.


2012 ◽  
Vol 215-216 ◽  
pp. 59-63 ◽  
Author(s):  
Juan Dai ◽  
Li Zhi Chen ◽  
Xiao Bing Pang

In order to reduce the weight of harmonic drive (HD), the total volume of flexspline and circular spline was formulated and used as an objection function. Under the constraints including the condition on the strength of flexspline, the condition on averting the tooth top interference, the condition on the transmission ratio of HD and the geometrical constraint conditions of flexspline, a design optimization model with mixed discrete variables was established. For directly applying the optimal design solution of flexspline to manufacture, a manufacture-oriented method for dealing with mixed discrete design variables was used and the established model was solved by using an improved compound genetic algorithm. An optimal design example of flexspline was given and it shows that the proposed method is practical and effective.


Sign in / Sign up

Export Citation Format

Share Document