Design Optimization of the Flexspline in Harmonic Drive

2012 ◽  
Vol 215-216 ◽  
pp. 59-63 ◽  
Author(s):  
Juan Dai ◽  
Li Zhi Chen ◽  
Xiao Bing Pang

In order to reduce the weight of harmonic drive (HD), the total volume of flexspline and circular spline was formulated and used as an objection function. Under the constraints including the condition on the strength of flexspline, the condition on averting the tooth top interference, the condition on the transmission ratio of HD and the geometrical constraint conditions of flexspline, a design optimization model with mixed discrete variables was established. For directly applying the optimal design solution of flexspline to manufacture, a manufacture-oriented method for dealing with mixed discrete design variables was used and the established model was solved by using an improved compound genetic algorithm. An optimal design example of flexspline was given and it shows that the proposed method is practical and effective.

2018 ◽  
Vol 12 (3) ◽  
pp. 181-187
Author(s):  
M. Erkan Kütük ◽  
L. Canan Dülger

An optimization study with kinetostatic analysis is performed on hybrid seven-bar press mechanism. This study is based on previous studies performed on planar hybrid seven-bar linkage. Dimensional synthesis is performed, and optimum link lengths for the mechanism are found. Optimization study is performed by using genetic algorithm (GA). Genetic Algorithm Toolbox is used with Optimization Toolbox in MATLAB®. The design variables and the constraints are used during design optimization. The objective function is determined and eight precision points are used. A seven-bar linkage system with two degrees of freedom is chosen as an example. Metal stamping operation with a dwell is taken as the case study. Having completed optimization, the kinetostatic analysis is performed. All forces on the links and the crank torques are calculated on the hybrid system with the optimized link lengths


Author(s):  
Heeralal Gargama ◽  
Sanjay K Chaturvedi ◽  
Awalendra K Thakur

The conventional approaches for electromagnetic shielding structures’ design, lack the incorporation of uncertainty in the design variables/parameters. In this paper, a reliability-based design optimization approach for designing electromagnetic shielding structure is proposed. The uncertainties/variability in the design variables/parameters are dealt with using the probabilistic sufficiency factor, which is a factor of safety relative to a target probability of failure. Estimation of probabilistic sufficiency factor requires performance function evaluation at every design point, which is extremely computationally intensive. The computational burden is reduced greatly by evaluating design responses only at the selected design points from the whole design space and employing artificial neural networks to approximate probabilistic sufficiency factor as a function of design variables. Subsequently, the trained artificial neural networks are used for the probabilistic sufficiency factor evaluation in the reliability-based design optimization, where optimization part is processed with the real-coded genetic algorithm. The proposed reliability-based design optimization approach is applied to design a three-layered shielding structure for a shielding effectiveness requirement of ∼40 dB, used in many industrial/commercial applications, and for ∼80 dB used in the military applications.


2017 ◽  
Vol 2017 ◽  
pp. 1-12 ◽  
Author(s):  
Yue Wu ◽  
Qingpeng Li ◽  
Qingjie Hu ◽  
Andrew Borgart

Firefly Algorithm (FA, for short) is inspired by the social behavior of fireflies and their phenomenon of bioluminescent communication. Based on the fundamentals of FA, two improved strategies are proposed to conduct size and topology optimization for trusses with discrete design variables. Firstly, development of structural topology optimization method and the basic principle of standard FA are introduced in detail. Then, in order to apply the algorithm to optimization problems with discrete variables, the initial positions of fireflies and the position updating formula are discretized. By embedding the random-weight and enhancing the attractiveness, the performance of this algorithm is improved, and thus an Improved Firefly Algorithm (IFA, for short) is proposed. Furthermore, using size variables which are capable of including topology variables and size and topology optimization for trusses with discrete variables is formulated based on the Ground Structure Approach. The essential techniques of variable elastic modulus technology and geometric construction analysis are applied in the structural analysis process. Subsequently, an optimization method for the size and topological design of trusses based on the IFA is introduced. Finally, two numerical examples are shown to verify the feasibility and efficiency of the proposed method by comparing with different deterministic methods.


2011 ◽  
Vol 201-203 ◽  
pp. 1288-1291
Author(s):  
Xin Li Bai ◽  
Wei Yu ◽  
Dan Fei Wang ◽  
Yuan Yuan Fan

The simple genetic algorithm (SGA) is taken as the global search method, and the traditional direct search method for mixed-discrete variables as the local search method. The improved (hybrid) genetic algorithm (IGA) is obtained by improving the SGA. And through the introduction of penalty constraints, the problem dealing with the constraints in GA is successfully resolved. A mathematical model for structural optimization of aqueduct is established, and computer software is developed for structural optimization of large-scale aqueduct based on IGA. Using this program, the Shuangji River aqueduct is optimized and Rectangle-sectioned aqueduct design plan is obtained. Compared with the original design plan, optimal design is very economical and was adopted by Design Institute.


Author(s):  
Yanli Shao ◽  
Huawei Zhu ◽  
Rui Wang ◽  
Ying Liu ◽  
Yusheng Liu

Abstract Traditional design optimization is an iterative process of design, simulation, and redesign, which requires extensive calculations and analysis. The designer needs to adjust and evaluate the design parameters manually and continually based on the simulation results until a satisfactory design is obtained. However, the expensive computational costs and large resource consumption of complex products hinder the wide application of simulation in industry. It is not an easy task to search the optimal design solution intelligently and efficiently. Therefore, a simulation data-driven design approach which combines dynamic simulation data mining and design optimization is proposed to achieve this purpose in this study. The dynamic simulation data mining algorithm—on-line sequential extreme learning machine with adaptive weights (WadaptiveOS-ELM)—is adopted to train the dynamic prediction model to effectively evaluate the merits of new design solutions in the optimization process. Meanwhile, the prediction model is updated incrementally by combining new “good” data set to reduce the modeling cost and improve the prediction accuracy. Furthermore, the improved heuristic optimization algorithm—adaptive and weighted center particle swarm optimization (AWCPSO)—is introduced to guide the design change direction intelligently to improve the search efficiency. In this way, the optimal design solution can be searched automatically with less actual simulation iterations and higher optimization efficiency, and thus supporting the rapid product optimization effectively. The experimental results demonstrate the feasibility and effectiveness of the proposed approach.


Author(s):  
Umadevi Nagalingam ◽  
Balaji Mahadevan ◽  
Kamaraj Vijayarajan ◽  
Ananda Padmanaban Loganathan

Purpose – The purpose of this paper is to propose a multi-objective particle swarm optimization (MOPSO) algorithm based design optimization of Brushless DC (BLDC) motor with a view to mitigate cogging torque and enhance the efficiency. Design/methodology/approach – The suitability of MOPSO algorithm is tested on a 120 W BLDC motor considering magnet axial length, stator slot opening and air gap length as the design variables. It avails the use of MagNet 7.5.1, a Finite Element Analysis tool, to account for the geometry and the non-linearity of material for assuaging an improved design framework and operates through the boundaries of generalized regression neural network (GRNN) to advocate the optimum design. The results of MOPSO are compared with Multi-Objective Genetic Algorithm and Non-dominated Sorting Genetic Algorithm-II based formulations for claiming its place in real world applications. Findings – A MOPSO design optimization procedure has been enlivened to escalate the performance of the BLDC motor. The optimality in design has been out reached through minimizing the cogging torque, maximizing the average torque and reducing the total losses to claim an increase in the efficiency. The results have been fortified in well-distributed Pareto-optimal planes to arrive at trade-off solutions between different objectives. Research limitations/implications – The rhetoric theory of multi objective formulations has been reinforced to provide a decisive solution with regard to the choice of the design obtained from Pareto-optimal planes. Practical implications – The incorporation of a larger number of design variables together with an orientation to thermal and vibration analysis will still go a long way in bringing on board new dimensions to the fold of optimality in the design of BLDC motors. Originality/value – The proposal offers a new perspective to the design of BLDC motor in the sense it be-hives the facility of a swarm based approach to optimize the parameters in order that it serves to improve its performance. The results of a 120 W motor in terms of lowering the losses, minimizing the cogging torque and maximizing the average torque emphasize the benefits of the GRNN based multi-objective formulation and establish its viability for use in practical applications.


2000 ◽  
Vol 123 (1) ◽  
pp. 181-187 ◽  
Author(s):  
Dong-Hoon Choi ◽  
Ki-Chan Yoon

In order to improve the efficiency of the design process and the quality of the resulting design, this study proposes a design method for determining design variables of an automotive wheel-bearing unit of double-row angular-contact ball bearing type by using a genetic algorithm. The desired performance of the wheel-bearing unit is to maximize system life while satisfying geometrical and operational constraints without enlarging mounting space. The design variables selected are number of balls, initial contact angle, standard ball diameter, pitch circle diameter, preload, distance between ball centers, and wheel offset, which must be selected at the preliminary design stage. The use of gradient-based optimization methods for the design of the unit is restricted because this design problem is characterized by the presence of discrete design variables such as the number of balls and standard ball diameter. Therefore, the design problem of rolling element bearings is a constrained discrete optimization problem. A genetic algorithm using real coding and dynamic mutation rate is used to efficiently find the optimum discrete design values. To effectively deal with the design constraints, a ranking method is suggested for constructing a fitness function in the genetic algorithm. A computer program is developed and applied to the design of a real wheel-bearing unit model to evaluate the proposed design method. Optimum design results demonstrate the effectiveness of the design method suggested in this study by showing that the system life of an optimally designed wheel-bearing unit is enhanced in comparison with that of the current design without any constraint violations. It is believed that the proposed methodology can be applied to other rolling element bearing design applications.


2011 ◽  
Vol 55-57 ◽  
pp. 1502-1505
Author(s):  
Bo Zhong

The standard genetic algorithm is improved by introducing the engineering treatment method of design vector in order to solve the optimization problem with mixed-discrete variables. A program of improved genetic algorithm has been designed. It can be used to solve the optimal design problems with continuous variables, discrete variables or mixed-discrete variables. For a dimension chain, the fuzzy-robust design of dimension tolerance is discussed and a model of fuzzy-robust design optimization is established. The solution of established model is achieved by using the improved genetic algorithm and the robustness of the dimension tolerance has been improved. The example shows that the proposed method is effective in engineering design.


Sign in / Sign up

Export Citation Format

Share Document