Design and Performance Investigation of the Energy Recovering Rudder Bulb-Turbine Device

Author(s):  
Chunhui Wang ◽  
Ankang Hu ◽  
Fenglei Han

This study presents the performance investigation of a rudder bulb-turbine device (RBTD), which is designed to recover the rotational energy into torque to drive a generator inside the rudder. The blade of turbine is designed first by using lifting line theory, which is modified by lifting surface theory. The induced velocities between the forward propeller and turbine are obtained through the surface panel method (SPM). Hydrodynamic performance for the system is predicted by using SPM. An iterative calculation method is used until the hydrodynamic performance of the system converges. Through the design of turbine behind propeller of a large container ship, the influence of rotational speed of turbine on hydrodynamic performance of propeller-turbine system is observed. Then the size of rudder bulb is determined by calculating the influence of rudder bulb geometry on the hydrodynamic performance of the propeller-rudder system. Based on CFD technology, the hydrodynamic performance of the propeller-rudder system without/with RBTD is also simulated, and velocity distribution is observed. The results show that RBTD is successfully designed and as a ship energy saving device is feasible.

AIAA Journal ◽  
1973 ◽  
Vol 11 (5) ◽  
pp. 739-742 ◽  
Author(s):  
CHUAN-TAU LAN

2021 ◽  
pp. 1-25
Author(s):  
K.A.R. Ismail ◽  
Willian Okita

Abstract Small wind turbines are adequate for electricity generation in isolated areas to promote local expansion of commercial activities and social inclusion. Blade element momentum (BEM) method is usually used for performance prediction, but generally produces overestimated predictions since the wake effects are not precisely accounted for. Lifting line theory (LLT) can represent the blade and wake effects more precisely. In the present investigation the two methods are analyzed and their predictions of the aerodynamic performance of small wind turbines are compared. Conducted simulations showed a computational time of about 149.32 s for the Gottingen GO 398 based rotor simulated by the BEM and 1007.7 s for simulation by the LLT. The analysis of the power coefficient showed a maximum difference between the predictions of the two methods of about 4.4% in the case of Gottingen GO 398 airfoil based rotor and 6.3% for simulations of the Joukowski J 0021 airfoil. In the case of the annual energy production a difference of 2.35% is found between the predictions of the two methods. The effects of the blade geometrical variants such as twist angle and chord distributions increase the numerical deviations between the two methods due to the big number of iterations in the case of LLT. The cases analyzed showed deviations between 3.4% and 4.1%. As a whole, the results showed good performance of both methods; however the lifting line theory provides more precise results and more information on the local flow over the rotor blades.


2000 ◽  
Vol 37 (4) ◽  
pp. 662-670 ◽  
Author(s):  
W. F. Phillips ◽  
D. O. Snyder

1968 ◽  
Vol 72 (691) ◽  
pp. 623-625 ◽  
Author(s):  
H. C. Garner

Summary Theoretical data from lifting-surface theory are presented to illustrate (i) that the vortex drag factor is closely related to the half-wing spanwise centre of pressure on simple planforms without camber or twist, (ii) that lifting-line theory is useless for predicting the spanwise distribution of vortex drag on swept wings, (iii) that recent numerical improvements in lifting-surface theory help to reconcile the concepts of wake energy and leading-edge suction in relation to vortex drag.


2018 ◽  
Vol Vol 160 (A3) ◽  
Author(s):  
K Ramesh ◽  
I S Makkar

Advances in Computational Fluid Dynamics (CFD) techniques through the development of the Reynolds-Averaged Navier-Stokes Equations (RANSE) have assisted in estimation of resistance and propulsion characteristics of ships to a reasonable level of accuracy. The aim of this paper is to test and demonstrate the capabilities of the coupled RANSE and Lifting Line theory for undertaking ship resistance, propeller open-water and self-propulsion simulations. Further, parametric studies for generation of numerical propeller design sheets and optimisation of propulsive efficiency using the coupled simulation approach has been discussed. Commercial CFD solver “M/s Flowtech - Shipflow” has been used for the study. Initially, some benchmark experimental/numerical model results are validated with the results of the CFD simulations and then, further parametric analyses have been undertaken with the KRISO Container Ship and the KP505 Propeller. The numerical propeller series and the preliminary study methodology for optimization of location of propeller disc behind the ship’s hull are being proposed as an effective concept/feasibility design stage tool for estimation of ship propulsion characteristics.


Sign in / Sign up

Export Citation Format

Share Document