scholarly journals Impact of Hydrodynamic Interaction Between Pontoons on Global Responses of a Long Floating Bridge Under Wind Waves

Author(s):  
Xu Xiang ◽  
Thomas Viuff ◽  
Bernt Leira ◽  
Ole Øiseth

The hydrodynamic interaction between floating bridge pontoons and its impact on the bridge global responses are investigated in the current study. The global model for end-anchored floating bridge for Bjørnefjord crossing is modelled in ORCINA-OrcaFlex. Forty-six pontoons are used to support the bridge, with a centerline distance of 100m between two pontoons. Two models are setup for comparison: (1) The OrcaFlex model with hydrodynamic coefficients of pontoons without hydrodynamic interaction; (2) The OrcaFlex model with hydrodynamic interaction coefficients, which were calculated by ANSYS-AQWA. Firstly, a case study of hydrodynamic interaction effects on added mass, potential damping and diffraction force is given, showing that the piston and sloshing modes have strong correlation with the resonances. Then two sea states were run on the two models with and without hydrodynamic interaction effects. The first order wave effects are included in the analysis. The observed extremes of the time-domain bridge girder bending moments and motions were compared between two models. The comparison shows both reduction and increase of bridge responses depending on the wave directions. A sensitivity test of drag coefficients applied on the pontoon vertical motion is carried out as a rough examination of the neglected viscous damping on the hydrodynamic resonances. The viscous damping effects on the resonances should be further quantified.

1995 ◽  
Vol 117 (2) ◽  
pp. 78-84
Author(s):  
Y. Li

Simulation of the time histories of second-order wave effects is often performed by quadratic transformation of a wave time history. By the present approach, the quadratic transformation of waves is approximated by linear combinations of the products of component wave time records and their Hilbert transforms. The computational efficiency is greatly enhanced. The efficient quadratic transformation of a time history is for the time domain solution of structural dynamic response, and can also be used as a post-processor of the frequency domain solution for obtaining statistic parameters of dynamic response.


1993 ◽  
Vol 1993 (174) ◽  
pp. 243-251 ◽  
Author(s):  
Koichiro Yoshida ◽  
Hideyuki Suzuki ◽  
Noriaki Oka ◽  
Kazuhiro Iijima ◽  
Takuya Shimura ◽  
...  

2017 ◽  
Vol 159 (A4) ◽  
Author(s):  
N Jayarathne ◽  
D Ranmuthugala ◽  
Z Leong ◽  
J Fei

To date, most of the hydrodynamic interaction studies between a tug and a ship during ship assist manoeuvers have been carried out using model scale investigations. It is however difficult to establish how well results from these studies represent full scale interaction behaviour. This is further exacerbated by the lack of proven methodologies to non-dimensionalise the relative distances between the two vessels, enabling the comparison of model and full scale interaction effect data, as well as between vessels of dissimilar size ratios. This study investigates a suitable correlation technique to non-dimensionalise the lateral distance between vessels of dissimilar sizes, and a scaling option for interaction effect studies. It focuses on the interaction effects on a tug operating around the forward shoulder of a tanker at different lateral distances during ship assist operations. The findings and the non-dimensioning method presented in this paper enable the interaction effects determined for a given ship-to-tug ratio to be used to predict the safe operational distances for other ship-to-tug ratios.


Author(s):  
Christos Spitas ◽  
Mahmoud S Dwaikat ◽  
Vasileios Spitas

We elaborate a SDOF time-domain model for elastic hysteretic damping, by modifying the viscous damping model to introduce an instantaneous correction factor that recursively depends on the state variables of the system, such that the response exhibits weak dependency on frequency, corresponding to a large array of engineering materials. The effect of different formulations for calculating the instantaneous correction factor on the predicted hysteresis loops and the potential manifestation of singularities is studied. Hysteresis loops anticipated by the model are plotted and forced vibration responses to harmonic and other periodic non-harmonic excitations are simulated and discussed, also in comparison to the conventional viscous and Reid’s damping models.


Sign in / Sign up

Export Citation Format

Share Document