Numerical Simulation of Elastic Deformation Based on Peridynamic Differential Operator

Author(s):  
Yumeng Hu ◽  
Fan Liu ◽  
Guoqing Feng ◽  
Dongxu Zhang

Abstract The methodology of Peridynamics has been proposed for years and widely used in various engineering fields. The evolution of this theory is always in process, and two major branches appears, namely bond-based and state-based peridynamic method. Recently, a novel concept, peridynamic differential operator, was proposed and adopted in simulation of Newtonian fluid and analysis of structure strength. Just like the intrinsic idea in peridynamic theory, this new operator could convert the partial differential into its integral form so that it would enable the numerical differentiation through integration and avoid difficulties such as discontinuities or singularities encountered in the simulation. Also, unlike the traditional method that the higher order partial differential items are derived from the lower ones, peridynamic differential operator could easily provide differential items with any desired order thus it makes calculation process more efficient and convenient. In this study, the accuracy of peridynamic differential operator is tested by comparing with a given analytical formula. Then, this operator is embedded into the framework of Galerkin method and adopted for elastic deformation analysis in 2D case. The results are compared with those obtained from finite element method and its efficiency and feasibility are verified.

2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Meriem Belahdji ◽  
Setti Ayad ◽  
Mohammed Hichem Mortad

Abstract The aim of this paper is to provide some a priori estimates for a beam-like operator. Some applications and counterexamples are also given.


Author(s):  
K. S. Surana ◽  
M. A. Bona

Abstract This paper presents a new computational strategy, computational framework and mathematical framework for numerical computations of higher class solutions of differential and partial differential equations. The approach presented here utilizes ‘strong forms’ of the governing differential equations (GDE’s) and least squares approach in constructing the integral form. The conventional, or currently used, approaches seek the convergence of a solution in a fixed (order) space by h, p or hp-adaptive processes. The fundamental point of departure in the proposed approach is that we seek convergence of the computed solution by changing the orders of the spaces of the basis functions. With this approach convergence rates much higher than those from h,p–processes are achievable and the progressively computed solutions converge to the ‘strong’ i.e. ‘theoretical’ solutions of the GDE’s. Many other benefits of this approach are discussed and demonstrated. Stationary and time-dependant convection-diffusion and Burgers equations are used as model problems.


1997 ◽  
Vol 145 ◽  
pp. 125-142
Author(s):  
Takeshi Mandai

Consider a partial differential operator(1.1) where K is a non-negative integer and aj,a are real-analytic in a neighborhood of (0, 0)


1996 ◽  
Vol 1 ◽  
pp. 7-14
Author(s):  
Keiichi AKIMOTO ◽  
Hiroshi KANAZAWA ◽  
Masahiro INADA ◽  
Katsuichi YABUNAKA ◽  
Masashi HAMA

Sign in / Sign up

Export Citation Format

Share Document