Parametric Evaluation of Stress Concentration Factor (SCF) at Brace – Chord Intersection of a Ring Stiffened Tubular Joint

2021 ◽  
Author(s):  
G. Chandra Sai Krishna ◽  
S. Nallayarasu

Abstract Tubular joints are common in offshore framed structures such as jackets. These joints are subjected to fatigue due to cyclic loads from waves. Stress concentration factor plays a major role in the estimation of fatigue life. Studies have been carried out in the past on stress concentration factors for these joints. However, literature on ring stiffened joints is limited. In the present study, numerical simulations have been carried out on ring stiffened tubular joints, especially the T joints, subjected to axial tension load using finite element method in linear analysis using ABAQUS software. A solid type 20-node quadratic brick element (C3D20R) has been used in the study. Stresses in hotspot locations at brace/chord intersection, ring/chord intersection and ring inner edge are examined. The numerical model has been validated using published experimental data and Lloyd’s register recommendations. Further parametric study has been carried out with 20 models, which includes geometric parameters of ring stiffener such as width of stiffener, thickness of stiffener and spacing between the ring stiffeners. The results of parametric study show a significant reduction of SCF at saddle location by placing ring stiffeners in unstiffened T joint. A set of new parametric equations are developed to calculate SCF for ring stiffened T joint at saddle location for axial tensile load.

Author(s):  
Philippe Thibaux ◽  
Steven Cooreman

Stress concentration factors for tubular joints were computed using solid quadratic elements. The results of the computations are compared with experiments reported in the literature and with expressions reported in the literature and in design codes. An influence of element size and element type was observed, which leads to recommendations regarding element size of four quadratic elements in thickness, which is finer than in different published recommendations. A parametric study was performed, showing that stress concentration factors from the literature are not always conservative, particularly at the crown toe of the chord, while they tend to be overconservative at the chord saddle. The stress concentration factor for the inside of the member was also computed; it is found that it can be close to the stress concentration factor at the weld toe for both the in plane or out of plane bending modes.


2007 ◽  
Vol 42 (7) ◽  
pp. 551-555 ◽  
Author(s):  
K Bakhshandeh ◽  
I Rajabi

In this study, the effects of orthotropy ratio and plate length on the stress concentration factor for orthotropic plates with a centred circular opening under the action of uniaxial tension loads are investigated by use of the finite element method. This work demonstrates that the stress concentration factor depends on the length of the member in addition to other established geometric parameters. The value of the transition length between long and short plates is computed and reported as well. This study has shown that Tan's equation for a finite width orthotropic plate is accurate for a ratio of the opening radius to plate semiwidth of less than 0.35 for orthotropy ratios less than 50. A new concept is introduced, namely the transition ratio.


Author(s):  
Yuhui Huang ◽  
Chengcheng Wang ◽  
Shan-Tung Tu ◽  
Fu-Zhen Xuan ◽  
Takamoto Itoh

Finite element analysis is adopted to study the stress concentration of pit area under tension-torsion loading. The stress concentration factors under regular evolution and irregular evolution of pits are investigated by conducting a series of three-dimensional semi-elliptical pitted models. Based on the finite element analysis, it can be concluded that pit aspect ratio (a/2c) is a significant parameter affecting stress concentration factor (SCF) for regular evolution pits. Pits, having higher aspect ratio, are very dangerous form and can cause significant reduction in the load carrying capacity. When local dissolution occurs in the pitting area, SCF will have a sharp increase, it is more probable for a crack to initiate from these areas compared with pits for regular evolution. Furthermore, local dissolution coefficient is proposed to study effect of local dissolution within the pit on SCF.


Author(s):  
Kyle R. McLaughlin ◽  
Tugce Kasikci ◽  
Igor Tsukrov ◽  
Brad L. Kinsey

Tearing concerns in sheet metal forming have traditionally been predicted by comparing the strain state imposed on a material to its associated strain based Forming Limit Diagram. A shortcoming of this strain based failure criterion is that the Forming Limit Curves exhibit strain path dependence. Alternatively, a stress based failure criterion was introduced and shown analytically and numerically to exhibit less strain path dependence. In our past research, an analytical model was created to predict the stress based Forming Limit Curve. Inputs into the model include a material constitutive relationship, anisotropic yield criterion and a critical stress concentration factor, defined as the ratio of the effective stress in the base material to the effective stress in the necking region. This stress concentration factor is thought to be a material parameter, which characterizes a material’s ability to work harden and prevent the concentration of stress which produces the necking condition. In this paper, the critical stress concentration factors for steel and aluminum alloys were determined by comparing analytical model predictions and experimental data and found to be significantly different. A setup is then proposed to experimentally measure the critical stress concentration factors and initial results are presented.


Materials ◽  
2019 ◽  
Vol 12 (3) ◽  
pp. 422 ◽  
Author(s):  
Wenshuai Wang ◽  
Hongting Yuan ◽  
Xing Li ◽  
Pengpeng Shi

Functionally graded material (FGM) can optimize the mechanical properties of composites by designing the spatial variation of material properties. In this paper, the stress distribution of functionally graded panel with a central elliptical hole under uniaxial tensile load is analyzed. Based on the inhomogeneity variation and three different gradient directions, the effects of the inhomogeneity on the stress concentration factor and damage factor are discussed. The study results show that when Young’s modulus increases with the distance from the hole, the stress concentration factor decreases compared with that of homogeneous material, and the optimal design of r-FGM is better than that of x-FGM and y-FGM when the tensile load. In addition, when the associated variation of ultimate stress is considered, the choice of scheme to reduce the failure index is related to the strength-modulus exponent ratio. When the strength-modulus exponent ratio is small, the failure index changes with the index of power-law, which means there is an optimal FGM design. But when the strength-modulus exponent ratio is large, the optimal design modulus design is to select a uniform material that maximizes the modulus at each point. These research results have a certain reference value for further in-depth understanding of the inhomogeneous design for FGM.


1966 ◽  
Vol 17 (2) ◽  
pp. 177-186 ◽  
Author(s):  
L. H. Mitchell

SummaryThe stress-concentration factor is calculated for an infinite plate in tension containing a doubly-symmetrical hole whose boundary consists of parts of three intersecting circles. A suggestion is made for modifying the results to apply to a strip.


1976 ◽  
Vol 98 (1) ◽  
pp. 332-339 ◽  
Author(s):  
H. T. Gencsoy ◽  
J. F. Hamilton ◽  
C. C. Yang

Standard transmission photoelastic techniques were used to determine the resultant stress concentration factors produced by multiple stress raisers in flat, rectangular bars under uniaxial tension. Observations were made on the overlapping stress fields due to various combinations and orientations of holes and semicircular grooves. Two cases of directly superposed discontinuities were also investigated. The results of this investigation indicate that the sizes and relative positions of the discontinuities had a substantial effect on the resultant stress concentration factor. In some cases the stress concentration factor would be decreased while in other cases it would be increased. In the case of superposed stress raisers considered in this investigation, the resultant stress concentration factor can be taken as the product of the individual stress concentration factors; this is in agreement with the results of other investigators. However, for other cases, much judgment and experience will be required to decide when this can be done. And even then this product should be considered only as the probable upper limit of the actual stress concentration factor.


2019 ◽  
Vol 8 (3) ◽  
pp. 8546-8556

Many researchers have made attempt to investigate stress concentration factor (SCF) for different discontinuities under different loading conditions and applications, but still failures of components take place which having discontinuities. Number of applications under which the components or parts working under tensile loading. Here, efforts are made to investigate the SCF of flat plate with shoulder fillet under axial tension loading using the approach of Photoelasticity for different D/d ratios. The Finite Element Analysis (FEA) approach used to validate the results of experimentation and found that the results are reasonably at acceptable level. One can utilize the outcome of this research for similar application having same discontinuity and loading condition.


Author(s):  
Bogdan S. Wasiluk ◽  
Douglas A. Scarth

Procedures to evaluate volumetric bearing pad fretting flaws for crack initiation are in the Canadian Standard N285.8 for in-service evaluation of CANDU® pressure tubes. The crack initiation evaluation procedures use equations for calculating the elastic stress concentration factors. Newly developed engineering procedure for calculation of the elastic stress concentration factor for bearing pad fretting flaws is presented. The procedure is based on adapting a theoretical equation for the elastic stress concentration factor for an elliptical hole to the geometry of a bearing pad fretting flaw, and fitting the equation to the results from elastic finite element stress analyses. Non-dimensional flaw parameters a/w, a/c and a/ρ were used to characterize the elastic stress concentration factor, where w is wall thickness of a pressure tube, a is depth, c is half axial length, and ρ is root radius of the bearing pad fretting flaw. The engineering equations for 3-D round and flat bottom bearing pad fretting flaws were examined by calculation of the elastic stress concentration factor for each case in the matrix of source finite element cases. For the round bottom bearing pad fretting flaw, the fitted equation for the elastic stress concentration factor agrees with the finite element results within ±3.7% over the valid range of flaw geometries. For the flat bottom bearing pad fretting flaw, the fitted equation agrees with the finite element results within ±4.0% over the valid range of flaw geometries. The equations for the elastic stress concentration factor have been verified over the valid range of flaw geometries to ensure accurate results with no anomalous behavior. This included comparison against results from independent finite element calculations.


Sign in / Sign up

Export Citation Format

Share Document