Application of Large-Eddy Simulation and the Multi-Scalar Flamelet Approach to a Methane-Hydrogen Mixed-Combustion-Type Industrial Gas-Turbine Combustor

Author(s):  
Ryosuke Kishine ◽  
Tenshi Sasaki ◽  
Nobuyuki Oshima ◽  
Saad Sibawayh ◽  
Kohshi Hirano ◽  
...  

In pursuit of a reduction in environmental loading, gas turbines equipped with lean premixed combustor technology that use a hydrogen-enriched fuel instead of pure methane have entered practical service. An accurate numerical simulation method is therefore needed to reduce product-development costs to a minimum. We performed a numerical analysis of an industrial combustor with a mixed methane-hydrogen fuel by large-eddy simulation and extending the 2-scalar flamelet approach to a multi-scalar one. The calculation object was the combustor of an L30A-DLE gas-turbine. Two calculations were conducted with different fuel compositions at the supplemental burner. In the first simulation, the inflow gas was composed of methane and air, whereas in the second simulation, the inflow gas was composed of methane, air, and hydrogen. The inlet boundary conditions were set so that both cases have the same adiabatic flame temperature at the outlet. The temperature distributions throughout the combustor were approximately equal in both cases. This study therefore suggests that equivalent performance can be obtained by setting the inflow condition at the supplemental burner so that the outlet adiabatic temperatures are equal for both monofuel combustion and mixed combustion.

Author(s):  
Kevin Menzies

The gas turbine presents significant challenges to any computational fluid dynamics techniques. The combination of a wide range of flow phenomena with complex geometry is difficult to model in the context of Reynolds-averaged Navier–Stokes (RANS) solvers. We review the potential for large eddy simulation (LES) in modelling the flow in the different components of the gas turbine during a practical engineering design cycle. We show that while LES has demonstrated considerable promise for reliable prediction of many flows in the engine that are difficult for RANS it is not a panacea and considerable application challenges remain. However, for many flows, especially those dominated by shear layer mixing such as in combustion chambers and exhausts, LES has demonstrated a clear superiority over RANS for moderately complex geometries although at significantly higher cost which will remain an issue in making the calculations relevant within the design cycle.


2018 ◽  
Vol 34 (5) ◽  
pp. 1269-1284 ◽  
Author(s):  
I. Langella ◽  
Z. X. Chen ◽  
N. Swaminathan ◽  
S. K. Sadasivuni

2021 ◽  
Vol 42 (4) ◽  
pp. 511-526
Author(s):  
Zhiteng Gao ◽  
Ye Li ◽  
Tongguang Wang ◽  
Shitang Ke ◽  
Deshun Li

Fluids ◽  
2018 ◽  
Vol 3 (3) ◽  
pp. 65 ◽  
Author(s):  
Arne Heinrich ◽  
Guido Kuenne ◽  
Sebastian Ganter ◽  
Christian Hasse ◽  
Johannes Janicka

Combustion will play a major part in fulfilling the world’s energy demand in the next 20 years. Therefore, it is necessary to understand the fundamentals of the flame–wall interaction (FWI), which takes place in internal combustion engines or gas turbines. The FWI can increase heat losses, increase pollutant formations and lowers efficiencies. In this work, a Large Eddy Simulation combined with a tabulated chemistry approach is used to investigate the transient near wall behavior of a turbulent premixed stoichiometric methane flame. This sidewall quenching configuration is based on an experimental burner with non-homogeneous turbulence and an actively cooled wall. The burner was used in a previous study for validation purposes. The transient behavior of the movement of the flame tip is analyzed by categorizing it into three different scenarios: an upstream, a downstream and a jump-like upstream movement. The distributions of the wall heat flux, the quenching distance or the detachment of the maximum heat flux and the quenching point are strongly dependent on this movement. The highest heat fluxes appear mostly at the jump-like movement because the flame behaves locally like a head-on quenching flame.


Author(s):  
Daniel Moëll ◽  
Daniel Lörstad ◽  
Annika Lindholm ◽  
David Christensen ◽  
Xue-Song Bai

DLE (Dry Low Emission) technology is widely used in land based gas turbines due to the increasing demands on low NOx levels. One of the key aspects in DLE combustion is achieving a good fuel and air mixing where the desired flame temperature is achieved without too high levels of combustion instabilities. To experimentally study fuel and air mixing it is convenient to use water along with a tracer instead of air and fuel. In this study fuel and air mixing and flow field inside an industrial gas turbine burner fitted to a water rig has been studied experimentally and numerically. The Reynolds number is approximately 75000 and the amount of fuel tracer is scaled to represent real engine conditions. The fuel concentration in the rig is experimentally visualized using a fluorescing dye in the water passing through the fuel system of the burner and recorded using a laser along with a CCD (Charge Couple Device) camera. The flow and concentration field in the burner is numerically studied using both the scale resolving SAS (Scale Adaptive Simulation) method and the LES (Large Eddy Simulation) method as well as using a traditional two equation URANS (Unsteady Reynolds Average Navier Stokes) approach. The aim of this study is to explore the differences and similarities between the URANS, SAS and LES models when applied to industrial geometries as well as their capabilities to accurately predict relevant features of an industrial burner such as concentration and velocity profiles. Both steady and unsteady RANS along with a standard two equation turbulence model fail to accurately predict the concentration field within the burner, instead they predict a concentration field with too sharp gradients, regions with almost no fuel tracer as well as regions with far too high concentration of the fuel tracer. The SAS and LES approach both predict a more smooth time averaged concentration field with the main difference that the tracer profile predicted by the LES has smoother gradients as compared to the tracer profile predicted by the SAS. The concentration predictions by the SAS model is in reasonable agreement with the measured concentration fields while the agreement for the LES model is excellent. The LES shows stronger fluctuations in velocity over time as compared to both URANS and SAS which is due to the reduced amounts of eddy viscosity in the LES model as compared to both URANS and SAS. This study shows that numerical methods are capable of predicting both velocity and concentration in a gas turbine burner. It is clear that both time and scale resolved methods are required to accurately capture the flow features of this and probably most industrial DLE gas turbine burners.


Sign in / Sign up

Export Citation Format

Share Document