Study Results of Combustion Characteristics in Oxy-Fuel Combustion Process

Author(s):  
Takahiro Gotou ◽  
Toshihiko Yamada ◽  
Takashi Kiga ◽  
Nobuhiro Misawa ◽  
Keiichiro Hashimoto

Oxy-fuel combustion is expected to be one of the promising systems on CO2 capture from pulverized-coal fired power plant, and enable the CO2 to be captured in a more cost-effective manner compared to other CO2 capture process with the power generation from the results of previous study. Some studies in this area are implemented under Australia-Japan consortium established in 2004 and joint venture for Callide Oxy-fuel Project under Australia-Japan consortium is established in March 2008. The project is now under way for the retrofit oxy-fuel combustion to an existing power plant by way of demonstration and is implemented in Callide-A power plant No.4 unit owned by CS Energy with a capacity of 30MWe in Australia. This project aims at capturing CO2 from an actual power plant for CO2 storage. The demonstration operation will start in 2011. One of the key issues to achieve the reliable and stable operation is countermeasure against corrosion. Recently, we studied the behaviors of corrosive substances in combustion gas and trace elements in flue gas, which is mainly sulfur compounds and Hg respectively. Sulfur compounds causes corrosion of boiler tubes, and Hg causes corrosion of aluminum base heat exchangers in the CO2 processing unit. Knowledge of their behaviors in oxyfuel is insufficient, and obtaining their knowledge is important for suitable material selection, countermeasure against corrosion, and optimal process design. In order to confirm the behaviors of corrosion components and Hg, the pilot-scale combustion test in IHI is performed at the combustion test facilities; the capacity of the furnace is 1.2MWt. The combustion test is conducted under oxy-fuel and air combustion conditions because of confirmation of the difference in both conditions. In this paper, the behaviors of corrosion components and Hg in the oxy-fuel combustion process are introduced. These results obtained in this study can significantly contribute to the design and the improvement of the oxyfuel combustion process towards the commercialization.

2014 ◽  
Vol 35 (3) ◽  
pp. 39-57 ◽  
Author(s):  
Andrzej Ziębik ◽  
Paweł Gładysz

Abstract Oxy-fuel combustion (OFC) belongs to one of the three commonly known clean coal technologies for power generation sector and other industry sectors responsible for CO2 emissions (e.g., steel or cement production). The OFC capture technology is based on using high-purity oxygen in the combustion process instead of atmospheric air. Therefore flue gases have a high concentration of CO2. Due to the limited adiabatic temperature of combustion some part of CO2 must be recycled to the boiler in order to maintain a proper flame temperature. An integrated oxy-fuel combustion power plant constitutes a system consisting of the following technological modules: boiler, steam cycle, air separation unit, cooling water and water treatment system, flue gas quality control system and CO2 processing unit. Due to the interconnections between technological modules, energy, exergy and ecological analyses require a system approach. The paper present the system approach based on the ‘input-output’ method to the analysis of the: direct energy and material consumption, cumulative energy and exergy consumption, system (local and cumulative) exergy losses, and thermoecological cost. Other measures like cumulative degree of perfection or index of sustainable development are also proposed. The paper presents a complex example of the system analysis (from direct energy consumption to thermoecological cost) of an advanced integrated OFC power plant.


2019 ◽  
Author(s):  
Wayuta Srisang ◽  
Teerawat Sanpasertparnich ◽  
Brent Jacobs ◽  
Stavroula Giannaris ◽  
Corwyn Bruce ◽  
...  

2020 ◽  
Vol 12 (2) ◽  
pp. 67-77
Author(s):  
Quan Zhuang ◽  
Philip Geddis ◽  
Bruce Clements

A detailed economic evaluation was carried out to determine the impact of biomass and coal co-firing on power plant carbon capture by methods of plants equipment designing factors and performance, and the sum up of the associated breakdowns of CAPEX and OPEX. Based on the assumptions of the CO2 neutrality of biomass and likely governmental incentives to reduce CO2 emissions, the study results show that biomass and coal co-firing would result in both lower cost of carbon avoided (carbon capture) and lower incremental cost of electricity generation when MEA solvent carbon capture is applied. Two scenarios for co-firing with carbon capture, 30% biomass blending and 90% or 60% CO2 capture from stack, indicate different preference depending on lower or higher incentives.


2018 ◽  
Vol 32 (10) ◽  
pp. 10760-10772 ◽  
Author(s):  
Rongrong Zhai ◽  
Hai Yu ◽  
Lingjie Feng ◽  
Ying Chen ◽  
Kangkang Li ◽  
...  

Fuel ◽  
2015 ◽  
Vol 151 ◽  
pp. 50-56 ◽  
Author(s):  
Marcin Stec ◽  
Adam Tatarczuk ◽  
Lucyna Więcław-Solny ◽  
Aleksander Krótki ◽  
Marek Ściążko ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document