Integration of Hydro and Renewable Energy Resources in Energy Planning

Author(s):  
Lucero Cynthia Luciano De La Cruz ◽  
Cesar Celis

Abstract Renewable energy is the energy obtained from resources inexhaustible in the long term. Furthermore, in some countries, non-conventional renewable energy includes solar, wind, biomass, geothermal and mini-hydropower. The definition of mini-hydropower plants varies depending on the country. As an example, in Peru and Canada, mini-hydropower plants have different installing capacities, below 20MW and 50MW, respectively. Accordingly, this work (i) discusses the Energy Balance and challenges that renewable energies have to face on their way to the energy transition, (ii) highlights the forecast models to generate renewable energy in short-term energy planning. The historical data about the renewable energy resources and the energy produced have been obtained by COES. The R studio software was used for statistical analysis of renewable resources and electricity generation. Also, a forecast model was developed using a neural network to forecast renewable energy generation. The results show a strong correlation between hydro resources and non-conventional renewable energy resources. Finally, the data obtained from the renewable generation forecast model were used as input to carry out a short-term dispatch model using GAMS software to determine the forecast of daily marginal cost in SEIN.

2021 ◽  
Vol 13 (23) ◽  
pp. 13240
Author(s):  
Katundu Imasiku ◽  
Fortunate Farirai ◽  
Jane Olwoch ◽  
Solomon Nwabueze Agbo

Renewable energy and clean energy have been on the global agenda for energy transition for quite a long time but recently gained strong momentum, especially with the anticipated depletion of fossil fuels alongside increasing environmental degradation from their exploitation and the changing climate caused by their excessive carbon emissions. Despite this, Africa’s pursuit to transition to a green economy using renewable energy resources still faces constraints that hamper further development and commercialization. These may include socio-economic, technical, political, financial, and institutional policy framework barriers. Although hydrogen demand is still low in Southern Africa, the region can meet the global demands for green hydrogen as a major supplier because of its enormous renewable energy resource-base. This article reviews existing renewable energy resources and hydrogen energy policies in the Southern African Development Community (SADC). The significance of this review is that it explores how clean energy technologies that utilize renewable energy resources address the United Nations sustainable development goals (UN SDGs) and identifies the hydrogen energy policy gaps. This review further presents policy options and recommends approaches to enhance hydrogen energy production and ramp the energy transition from a fossil fuel-based economy to a hydrogen energy-based economy in Southern Africa. Concisely, the transition can be achieved if the existing hydrogen energy policy framework gap is narrowed by formulating policies that are specific to hydrogen development in each country with the associated economic benefits of hydrogen energy clearly outlined.


2021 ◽  
Vol 13 (8) ◽  
pp. 4104
Author(s):  
Claudia Gutiérrez ◽  
Alba de la Vara ◽  
Juan Jesús González-Alemán ◽  
Miguel Ángel Gaertner

The progressive energy transition to systems with higher shares of renewable energy is particularly important in islands regions, which are largely dependent on energy imports. In this context, to assess the impact of climate change on renewable energy resources during the 21st century is crucial for polycimakers and stakeholders. In this work, we provide an overview of wind and photovoltaic (PV) resources, its variability and complementarity between them, as well as their future changes, in the Canary Islands and surrounding areas. Variability is assessed through the analysis of energy droughts (low-productivity periods). In addition, a sensitivity test is performed to find the optimal combination of PV (photovoltaic) and wind that reduce energy droughts and the persistence of that conditions at a local scale. A set of climate simulations from the MENA-CORDEX runs are used, in present and future climate (2046–2065, 2081–2100) for two different scenarios (RCP2.6, RCP8.5). Results show different changes in wind productivity depending on the scenario: a decrease in RCP2.6 and an increase in the RCP8.5. PV experienced a subtle decrease, with some exceptions. Changes in variability are small and the complementarity test shows that high shares of PV energy (above 50%) reduce both, energy droughts and the persistence of drought conditions.


2015 ◽  
Vol 13 (1) ◽  
pp. 181-187 ◽  
Author(s):  
Eric Galvan Munoz ◽  
Guillermo Gutierrez Alcaraz ◽  
Nestor Gonzalez Cabrera

2019 ◽  
Vol 10 (12) ◽  
pp. 1165-1171
Author(s):  
Karl Gatterer ◽  
◽  
Salah Arafa ◽  

Reliable and affordable energy is the key for the socio-economic development in rural and desert communities worldwide. While energy can be used for consumption purposes such as Lighting, Access to Information, Comfort and Entertainment, productive use of renewable energy is the key enabler for SMEs and Economy to grow. The paper examines the complex interactions among Energy, Materials, Water, Food, Building, Employment and Environment. It also discusses the implementation of renewable energy technologies to overcome some of barriers faced by rural villages and desert communities. It shows some of the special applications and approaches used over the past few decades in energy conversion, consumption and conservation to achieve poverty reduction, social justice and sustainable development. Field experiences in Basaisa projects, Egypt showed that open free dialogues with all stakeholders, site-specific education and training, appropriate local financing systems and access to knowledge are key-elements and essential factors for achieving green economy and sustainable community development. The coming decade will see a continued expansion of knowledge about renewable energy resources and its useful applications as systems friendly to the environment and as tools for economic activities, sustainable living and growth in rural and desert communities.


2012 ◽  
Vol 2 (11) ◽  
pp. 121-124
Author(s):  
Savitha C Savitha C ◽  
◽  
Dr. S. Mahendrakumar Dr. S. Mahendrakumar

Author(s):  
S. G. Obukhov ◽  
I. A. Plotnikov ◽  
V. G. Masolov

The paper presents the results of the comparative analysis of operation modes of an autonomous hybrid power complex with/without the energy store. We offere the technique which defines the power characteristics of the main components of a hybrid power complex: the consumers of the electric power, wind power and photo-electric installations (the last ones have been constructed). The paper establishes that, in order to compensate the seasonal fluctuations of power in autonomous power systems with renewable energy resources, the accumulative devices are required, with a capacity of tens of MWh including devices that are capable to provide energy storage with duration about half a year. This allows abandoning the storage devices for smoothing the seasonal fluctuations in the energy balance.The analysis of operation modes of energy stores has shown that for a stock and delivery of energy on time intervals, lasting several hours, the accumulative devices with rather high values of charging and digit power aren't required. It allows using the lead-acid rechargeable batteries of the deep category for smoothing the daily peaks of surplus and a capacity shortage. Moreover, the analysis of operation modes of energy stores as a part of the hybrid complexes has demonstrated that in charging/digit currents of the energy store the low-frequency and high-frequency pulsations of big amplitude caused by changes of size of output power of the renewable power installations and loading are inevitable. If low-frequency pulsations (the period of tens of minutes) can partially be damped due to the restriction of size of the maximum charging current of rechargeable batteries, then it is essentially impossible to eliminate high-frequency pulsations (the period of tens of seconds) in the power systems with the only store of energy. The paper finds out that the combined energy store having characteristics of the accumulator in the modes of receiving and delivery of power on daily time intervals, and at the same time having properties of the supercondenser in the modes of reception and return of impulses of power on second intervals of time is best suited to requirements of the autonomous power complexes with renewable energy resources.


Sign in / Sign up

Export Citation Format

Share Document