scholarly journals Impact of Climate Change on Wind and Photovoltaic Energy Resources in the Canary Islands and Adjacent Regions

2021 ◽  
Vol 13 (8) ◽  
pp. 4104
Author(s):  
Claudia Gutiérrez ◽  
Alba de la Vara ◽  
Juan Jesús González-Alemán ◽  
Miguel Ángel Gaertner

The progressive energy transition to systems with higher shares of renewable energy is particularly important in islands regions, which are largely dependent on energy imports. In this context, to assess the impact of climate change on renewable energy resources during the 21st century is crucial for polycimakers and stakeholders. In this work, we provide an overview of wind and photovoltaic (PV) resources, its variability and complementarity between them, as well as their future changes, in the Canary Islands and surrounding areas. Variability is assessed through the analysis of energy droughts (low-productivity periods). In addition, a sensitivity test is performed to find the optimal combination of PV (photovoltaic) and wind that reduce energy droughts and the persistence of that conditions at a local scale. A set of climate simulations from the MENA-CORDEX runs are used, in present and future climate (2046–2065, 2081–2100) for two different scenarios (RCP2.6, RCP8.5). Results show different changes in wind productivity depending on the scenario: a decrease in RCP2.6 and an increase in the RCP8.5. PV experienced a subtle decrease, with some exceptions. Changes in variability are small and the complementarity test shows that high shares of PV energy (above 50%) reduce both, energy droughts and the persistence of drought conditions.

2021 ◽  
Author(s):  
Claudia Gutiérrez ◽  
Alba de la Vara ◽  
Juan Jesús González-Alemán ◽  
Miguel Ángel Gaertner

<p>The enhanced vulnerability of insular regions to climate change highlights the importance of undertaking adaptation and mitigation strategies according to the specific singularities of the islands. Islands are highly dependent on energy imports and the transition to a system with higher shares of renewable energies, in order to reduce greenhouse gas emissions in these regions, can also reduce the external energy dependence. In this context, the assessment of the impact of climate change on renewable energy resources during the 21st century is crucial for policymakers and stakeholders, due to the increasing vulnerability of the system to climate variability. The aim of this work is to provide an overview of wind and photovoltaic (PV) resources, their variability and complementarity between them, as well as their future changes, in the Euro-Mediterranean and Canary islands. Due to the limitations in land surface availability in the islands for the installation of renewable energy capacity, the analysis is extended to offshore wind and photovoltaic energy, which may have an important role in the future increases of renewable energy share. Variability is assessed through the analysis of energy droughts (low-productivity periods). In addition, a case study for optimization of wind and solar combination over the Canary islands is performed. In that sense, a sensitivity test is developed to find the optimal combination of PV and wind that reduce energy droughts and the persistence of that conditions at a local scale. To that end, we use climate variables from a series of regional climate simulations derived from Euro-CORDEX and MENA-CORDEX for the RCP2.6 and RCP8.5 emission scenarios and for the periods 2046-2065 and 2081-2100. The obtained results are very dependent on the region analyzed. Whereas an overall decrease is projected in wind resource over the Mediterranean islands for the future, an increase is projected for the Canarian archipelago. Changes in PV productivity are small in any case, as well as variability changes. These results, which are part of the SOCLIMPACT H2020 project, highlight the importance of targeting climate information and give condensed and valuable data to facilitate climate-related policy decision making for decarbonization and Blue Growth in the islands.</p>


2013 ◽  
pp. 143-146
Author(s):  
Orsolya Nagy

The use of renewable energies has a long past, even though its share of the total energy use is rather low in European terms. However, the tendencies are definitely favourable which is further strengthened by the dedication of the European Union to sustainable development and combat against climate change. The European Union is on the right track in achieving its goal which is to be able to cover 20% its energy need from renewable energy resources by 2020. The increased use of wind, solar, water, tidal, geothermal and biomass energy will reduce the energy import dependence of the European Union and it will stimulate innovation.


Author(s):  
Carlos V C Weiss ◽  
Melisa Menendez ◽  
Bárbara Ondiviela ◽  
Raúl Guanche ◽  
Iñigo J Losada ◽  
...  

Abstract The development of the marine renewable energy and offshore aquaculture sectors is susceptible to being affected by climate change. Consequently, for the long-term planning of these activities, a holistic view on the effects of climate change on energy resources and environmental conditions is required. Based on present climate and future climate scenario, favourable conditions for wind and wave energy exploitation and for farming six marine fish species are assessed using a suitability index over all European regional seas. Regarding available energy potential, the estimated changes in climate do not have direct impacts on the geographic distribution of potential regions for the energy industry (both wind and wave based), that is they pose no threat to this industry. Long-term changes in environmental conditions could however require adaptation of the aquaculture sector and especially of its exploitation areas. Opportunities for aquaculture expansion of the assessed species are identified. Possibilities for co-location of these activities are observed in the different climate scenarios. The evaluation of potential zones for the exploitation of marine renewable energy resources and offshore aquaculture represents a stepping-stone, useful for improving decision-making and assisting in the management of marine economies both in the short-term and in the long-term development of these sectors.


2018 ◽  
Vol 117 ◽  
pp. 324-340 ◽  
Author(s):  
Miraj Ahmed Bhuiyan ◽  
Musarrat Jabeen ◽  
Khalid Zaman ◽  
Aqeel Khan ◽  
Jamilah Ahmad ◽  
...  

2019 ◽  
Vol 8 (4) ◽  
pp. 75
Author(s):  
Rita Bužinskienė

Paper is characterized by scientific novelty as it involves a very scarce research problem in Lithuanian‘s energy sector, assessing the impact of renewable energy resources on the energy economy. Renewable energy sources have a multiplier effect in spurring the economy and the development of not only the energy sector but also all the supporting activities related to such industry. The impact of the development of renewable energy is one of the factors that develop the quality of technology innovation development. This study includes the impact of renewable energy on the energy economy, using multiple linear regression models. The results of the study have shown that renewable energy resources: wind, sun, water, geothermal and biomass can not always be used together because they compete with each other and therefore reduce the efficiency of the energy economy. In this context, three combinations of renewable energy resources have been developed, which have been adapted to assess the impact of the energy economy on energy productivity and energy intensity. It has been found that the combination of resources of the second model (M2) RE is significant for the efficiency of the energy economy.Keywords: Renewable energy resources; Energy economy; Impact of efficiency


Author(s):  
Lucero Cynthia Luciano De La Cruz ◽  
Cesar Celis

Abstract Renewable energy is the energy obtained from resources inexhaustible in the long term. Furthermore, in some countries, non-conventional renewable energy includes solar, wind, biomass, geothermal and mini-hydropower. The definition of mini-hydropower plants varies depending on the country. As an example, in Peru and Canada, mini-hydropower plants have different installing capacities, below 20MW and 50MW, respectively. Accordingly, this work (i) discusses the Energy Balance and challenges that renewable energies have to face on their way to the energy transition, (ii) highlights the forecast models to generate renewable energy in short-term energy planning. The historical data about the renewable energy resources and the energy produced have been obtained by COES. The R studio software was used for statistical analysis of renewable resources and electricity generation. Also, a forecast model was developed using a neural network to forecast renewable energy generation. The results show a strong correlation between hydro resources and non-conventional renewable energy resources. Finally, the data obtained from the renewable generation forecast model were used as input to carry out a short-term dispatch model using GAMS software to determine the forecast of daily marginal cost in SEIN.


2021 ◽  
Author(s):  
Judit Carrillo ◽  
Albano González ◽  
Juan C. Pérez ◽  
Francisco J. Expósito ◽  
Juan P. Díaz

<p>Tourism is an essential sector of the economy of the Canary Islands. Tourism Climate Index (TCI) and Holiday Climate Index (HCI) are good indicators of environmental conditions for leisure activities. Regional climate model (RCM) has been addressed to analyze the impact of climate change on the indices of tourist areas. The initial and boundary conditions for future scenarios are prescribed through three CMIP5 models (GFDL, IPSL and MIROC)  surface and lateral boundary conditions within the Meteorological Research and Forecast (WRF), with a high resolution, 3x3 km. Two time periods (2030 – 2059, and 2070-2099) and two Representative Concentration Pathways (RCPs 4.5 and 8.5) are considered. Tourism indicators are projected to improve significantly during the winter and shoulder seasons, but will worsen in the summer months, including October, in the southeast, which is where hotels are currently located.</p>


Sign in / Sign up

Export Citation Format

Share Document