A Critical Comparison of Seismic Qualification Requirements for Safety Equipment in Various Codes and Standards

2003 ◽  
Author(s):  
F. G. Abatt ◽  
Quazi Hossain ◽  
Milon Meyer

Evaluation of life safety risks to facility occupants, public, and the environment that may result from earthquake events involves both building structures and equipment supported from these structures. But, it is the seismic design of building structures that typically receive the bulk of the attention from the code committees of the national professional organizations and the regulatory authorities. For safety related equipment in nuclear facilities (e.g., Seismic Category I equipment in nuclear power plants and Seismic Performance Category 3 and 4 equipment in the Department of Energy facilities), the seismic design and analysis guidelines and acceptance criteria are well established. But, for Nonseismic Category equipment in nuclear power plants and Seismic Performance Category 1 and 2 equipment in Department of Energy facilities, these have not yet been developed to the same level of completeness and rigor. The code provisions and guidelines available today for these lower class/categories of equipment are briefly, but critically discussed here, along with a comparison of the results of the application of these code provisions.

Author(s):  
Jim Xu ◽  
Sujit Samaddar

The U.S. Nuclear Regulatory Commission (NRC) established a new process for licensing nuclear power plants under Title 10 of the Code of Federal Regulations (10 CFR) Part 52, “Licenses, Certifications, and Approvals for Nuclear Power Plants,” which provides requirements for early site permits (ESPs), standard design certifications (DCs), and combined license (COL) applications. In this process, an application for a COL may incorporate by reference a DC, an ESP, both, or neither. This approach allows for early resolution of safety and environmental issues. The COL review will not reconsider the safety issues resolved by the DC and ESP processes. However, a COL application that incorporates a DC by reference needs to demonstrate that pertinent site-specific parameters are confined within the safety envelopes established by the DC. This paper provides an overview of site parameters related to seismic designs and associated seismic issues encountered in DC and COL application reviews using the 10 CFR Part 52 process. Since DCs treat the seismic design and analysis of nuclear power plant (NPP) structures, systems, and components (SSC) as bounding to future potential sites, the design ground motions and associated site parameters are often conservatively specified, representing envelopes of site-specific seismic hazards and parameters. For a COL applicant to incorporate a DC by reference, it needs to demonstrate that the site-specific hazard in terms of ground motion response spectra (GMRS) is enveloped by the certified design response spectra of the DC. It also needs to demonstrate that the site-specific seismic parameters, such as foundation-bearing capacities, soil profiles, and the like, are confined within the site parameter envelopes established by the DC. For the noncertified portion of the plant SSCs, the COL applicant should perform the seismic design and analysis with respect to the site-specific GMRS and associated site parameters. This paper discusses the seismic issues encountered in the safety reviews of DC and COL applications. Practical issues dealing with comparing site-specific features to the standard designs and lessons learned are also discussed.


Author(s):  
Alex H. Hashemian ◽  
Hash M. Hashemian ◽  
Tommy C. Thomasson ◽  
Jeffrey R. Kapernick

Small Modular Reactors (SMRs) under design and development today are working to crystallize the measurements that must be made to control the reactor and monitor its safety. Traditionally, temperature, pressure, level, flow, and neutron flux are measured in conventional nuclear reactors for operation and control and to protect against equipment and process deviations that can affect safety. In most current SMR designs, essentially the same process variables may have to be measured; especially primary coolant flow depending on whether the core cooling and heat transfer results from natural circulation or forced flow. The flow can be measured directly or inferred from other measurements or estimated through empirical or physical modeling. The conventional sensors that are qualified for nuclear services and are currently used in nuclear power plants may or may not be suitable for SMRs. It all depends on the size and qualification requirements, installation details, static and dynamic performance specifications, wiring details, and sensor life expectancy. This paper will explore the possibilities that exist for SMRs to use today’s sensors and any need for new sensor designs. In addition, the paper will identify new means for automated monitoring of instrumentation and control (I&C) sensor performance in SMRs. In particular, the existing array of online calibration monitoring techniques and in-situ response time measurement methods will be evaluated for implementation in SMRs. This is important at this early stage as SMRs can easily build provisions in their mechanical, electrical, and I&C designs to accommodate online and automated I&C maintenance. For example, it is envisioned that SMRs will not be performing periodic sensor calibrations using classical hands-on procedures. Rather, SMRs are expected to be equipped with new technologies to verify the I&C performance automatically and flag the sensors and systems to be calibrated, response time tested, repaired, or replaced. The paper will explore these possibilities and will report on a current R&D project that is underway at AMS with funding from the U.S. Department of Energy (DOE) with the goal to adapt the existing online monitoring (OLM) technologies for implementation in SMRs. The existing OLM technologies have been used by AMS in commercial nuclear power plants and research reactors for monitoring of I&C equipment performance including calibration, response time, detection of sensing line blockages, and to distinguish whether a signal anomaly is due to cables/connectors, electromagnetic interference, an end device being a sensor or a pump, other rotating equipment, etc.


Sign in / Sign up

Export Citation Format

Share Document