An Assessment of Low Alloy Steel EAC Corrosion Fatigue Relationships for BWR Environment

Author(s):  
Hardayal Mehta ◽  
Ron Horn

The fatigue crack growth rates for ferritic steels in water environments given in A-4300 of Appendix A, Section XI, ASME Code, were developed from data obtained prior to 1980. Subsequently, updated assessments by Eason, et al. and recent laboratory test results from Seifert and Ritter demonstrated that under certain conditions, ferritic steels exposed to oxygenated water environments may be susceptible to high fatigue crack growth rates that exceed the current disposition curves. In the light of ASME adopting Code Case N-643 for PWRs, there is a need for a similar Code Case for the BWR water environments (for both the normal water chemistry and hydrogen water chemistry/NobleChem) that takes into account these findings. This could mean modification of current EAC curves in the ASME Code. A joint program of EPRI and GE was developed to address this need for updated evaluations of the corrosion fatigue. The program’s first task has been to re-assess the role of rise time, environment, alloy, heat treatment and impurity levels on the established ASME codified disposition curves/methodologies. The data was then used as a basis to assess the impact of on modified cyclic curves on the disposition approaches that are currently used to evaluate postulated flaws in the BWR reactor pressure vessel or RPV head and the feed water nozzle regions. The presentation would include a discussion of the appropriate BWR plant transients and the GE process for performing evaluations. The role of the evaluations on the establishment of inspection intervals currently determined using NUREG-0619 and the latest BWROG Report would also be presented. Finally, the relationship between cyclic load and constant load behavior in these steels are discussed in the context of the mechanisms for environmentally assisted cracking.

Author(s):  
Kunio Hasegawa ◽  
Vratislav Mares ◽  
Yoshihito Yamaguchi ◽  
Yinsheng Li

Reference curves of fatigue crack growth rates for ferritic steels in air environment are provided by the ASME Code Section XI Appendix A. The fatigue crack growth rates under negative R ratio are given as da/dN vs. Kmax, It is generally well known that the growth rates decreases with decreasing R ratios. However, the da/dN as a function of Kmax are the same curves under R = 0, −1 and −2. In addition, the da/dN increases with decreasing R ratio for R < −2. This paper converts from da/dN vs. Kmax to da/dN vs. ΔKI, using crack closure U. It can be obtained that the growth rates da/dN as a function of ΔKI decrease with decreasing R ratio for −2 ≤ R < 0. It can be seen that the growth rate da/dN vs. ΔKI is better equation than da/dN vs. Kmax from the view point of stress ratio R. Furthermore, extending crack closure U to R = −5, it can be explained that the da/dN decreases with decreasing R ratio in the range of −5 ≤ R < 0. This tendency is consistent with the experimental data.


2016 ◽  
Vol 139 (3) ◽  
Author(s):  
Kunio Hasegawa ◽  
Vratislav Mares ◽  
Yoshihito Yamaguchi

Reference curves of fatigue crack growth rates for ferritic steels in air environment are provided by the ASME Code Section XI Appendix A. The fatigue crack growth rates under negative R ratio are given as da/dN versus Kmax. It is generally well known that the growth rates decreases with decreasing R ratios. However, the da/dN as a function of Kmax are the same curves under R = 0, −1, and −2. In addition, the da/dN increases with decreasing R ratio for R < −2. This paper converts from da/dN versus Kmax to da/dN versus ΔKI, using crack closure U. It can be obtained that the growth rates da/dN as a function of ΔKI decrease with decreasing R ratio for −2 ≤ R < 0. It can be seen that the growth rate da/dN versus ΔKI is better equation than da/dN versus Kmax from the view point of stress ratio R. Furthermore, extending crack closure U to R = −5, it can be explained that the da/dN decreases with decreasing R ratio in the range of −5 ≤ R < 0. This tendency is consistent with the experimental data.


Author(s):  
Norman Platts ◽  
David R. Tice ◽  
Alexandra Panteli ◽  
Sam Cruchley

Laboratory tests on austenitic stainless steel in simulated light water reactor (LWR) coolant environments have been shown to give rise to significant environmental enhancements of fatigue crack growth, especially at low cycling frequencies. The impact of LWR environments on fatigue crack growth has recently been codified in ASME code Case N-809 in terms of parameters such as rise time, stress intensity factor and load ratio. However, plant performance suggests that the application of these predicted environmental effects using current assessment procedures may be unduly pessimistic. This has led to significant number of studies of waveform shape (specifically hold periods) on the corrosion fatigue crack propagation in austenitic stainless steels in LWR environments. The main emphasis of this work addresses the ability of hold periods to cause retardation of environmental crack growth rates. There has been substantial variability in results of these studies with some authors reporting significant retardation whilst others have failed to observe retardation, or even reported additional environmental enhancement of crack growth rates for nominally similar loading waveforms. Although some of the variability may be accounted for in terms of material composition, there remains a considerable uncertainty both on the impact of holds, especially at different positions in the waveform, and the manner in which hold periods should be taken into account in plant assessments (e.g. in assessment procedures such as N-809). The current paper provides a critical review of published data on the effect of hold periods on corrosion fatigue in LWR environments as well as presenting new targeted data generation and analysis in order to rationalise the reported observations.


Author(s):  
Kunio Hasegawa ◽  
Bohumir Strnadel

Fatigue crack growth rates are expressed as a function of the stress intensity factor ranges. The fatigue crack growth thresholds are important characteristics of fatigue crack growth assessment for the integrity of structural components. Almost all materials used in these fatigue tests are ferritic steels. As a result, the reference fatigue crack growth rates and the fatigue crack growth thresholds for ferritic steels were established as rules and they were provided by many fitness-for-service (FFS) codes. However, the thresholds are not well defined in the range of negative stress ratio. There are two types of thresholds under the negative stress ratio. That is, constant thresholds and increment of thresholds with decreasing stress ratios. The objective of this paper is to introduce the thresholds provided by FFS codes and to analyze the thresholds using crack closure. In addition, based on the experimental data, definition of the threshold is discussed to apply to FFS codes. Finally, threshold for ferritic steels under the entirely condition of stress ratio is proposed to the ASME Code Section XI.


Author(s):  
Stephen J. Hudak ◽  
James H. Feiger ◽  
Jason A. Patton

Corrosion-fatigue is a significant design consideration in deepwater floating production systems. Mechanical loading is accentuated due to the compliant nature of these structures, and sour service conditions can also occur either due to the nature of the crude production or due to seawater flooding of the reservoir to enhance production yield. New high-strength riser steels have recently been developed to meet the demands of deepwater development. The objective of this study was to characterize the corrosion-fatigue resistance of these materials in terms of crack growth rates as a function of applied stress intensity factor range (ΔK), as well as cyclic loading frequency. Experiments were performed on five different steels with yield strengths ranging from 848 to 1080 MPa. Two environments were considered: seawater with cathodic protection to simulate the environment outside of the riser, and a sour brine environment with low oxygen (&lt; 10 ppb) to simulate the environment inside the riser. Not all steels were tested in the sour brine environment since not all were designed to operate in sour service. For both environments, higher strength steels were found to exhibit higher growth rates and lower saturation frequencies. Fatigue crack growth rates as a function of ΔK were also measured, and exhibited two different frequency responses. At high ΔK, the classical frequency response occurred: decreased frequency gave increased crack growth rates. At low ΔK, an inverse frequency effect was observed: deceased frequency gave decreased crack growth rates, as well as increased corrosion-fatigue crack growth thresholds. These differences are believed to be caused by different underlying processes controlling crack growth — specifically, material-environment reaction kinetics at high ΔK, and crack closure due to corrosion-product wedging at low ΔK. The practical significance of these results is discussed, including selection of frequencies for corrosion-fatigue crack growth testing, and applicability of results to structural integrity assessments.


Author(s):  
Mohammad Hassan Marvasti ◽  
Weixing Chen ◽  
Richard Kania ◽  
Robert Worthingham ◽  
Greg Van Boven

Corrosion fatigue and fatigue crack growth in air tests were comparatively conducted on an X52 pipelines steel. Fatigue crack growth rates in air were lower than corrosion fatigue crack growth rates due to the absence of hydrogen and mechanical dormancy arisen from low temperature creep at low cyclic frequencies. Mechanical dormancy can commonly occur during operation of both oil and gas pipelines. Crack growth in near neutral pH environments can be well rationalized by a combined loading factor, (ΔK)2Kmax/fα, which reflects the synergistic interaction between the mechanical driving force and the hydrogen effects. Hydrogen plays a decisive role in terms of crack growth in pipelines steels exposed to near neutral pH environments.


Author(s):  
Stephen J. Hudak ◽  
Guadalupe B. Robledo ◽  
James H. Feiger

Corrosion-fatigue is a significant design consideration in deepwater floating production systems. Mechanical loading is accentuated due to the compliant nature of these structures, and sour service conditions can also occur either due to the nature of the crude production or due to seawater flooding of the reservoir to enhance production yield. Consequently, over the past ten years a significant amount of corrosion-fatigue data have been generated on the influence of sour brine environments on conventional steels (X 65 and X 70), and more recently, on new higher strength steels specifically developed for deepwater applications. Although corrosion-fatigue data have also been generated for Ti-alloys in seawater, little or no data are available for Ti alloys in sour brine environment. The goal of this study, sponsored by the US DOE through the RPSEA Project, was to fill this knowledge gap by generating corrosion-fatigue data on a Ti Grade 29 alloy in sour brine with low-oxygen representative of the environment inside risers and stress joints. Corrosion-fatigue crack growth rates were initially obtained at a constant crack-tip driving force, ΔK, to assess the influence of cyclic loading frequency. These results were used to determine optimum frequencies for subsequent fatigue crack growth rate testing as a function of ΔK, thereby providing results that can be used in engineering critical assessments to establish NDE inspection limits. In addition, classical corrosion fatigue S-N fatigue data, which are typically utilized in fatigue design, were also generated on Ti-29 using full-thickness strip fatigue specimens extracted from the pipe wall. All data were generated on base material. The Ti-29 data are also compared to those from a companion study on high strength steels. At high ΔK, the baseline air fatigue crack growth rates in Ti-29 exhibited rates that were 3X-4X greater than those in the steels due to the effect of the lower modulus and lower ductility in Ti-29 compared to those in the steels. In contrast, at low ΔK, the rates in Ti-29 in air were equal to or less than those in the steels of comparable strength levels. In sour brine at ΔK values of 20 MPa√m and above, the rates in sour brine were up to 2X-4X greater than those in air; however, at low ΔK the rates in sour brine merged with those in air. Consequently, at high ΔK, the higher baseline rates in air plus the increase of 2X-4X in the sour brine environment resulted in corrosion-fatigue crack growth rates in Ti-29 that approached those of the steels. However, at low ΔK in sour brine, a reduction in the local crack driving force in Ti-29, believed to be due to roughness-induced crack closure, resulted in Ti-29 rates that were comparable to the air crack growth rates in steels. The S-N fatigue lives of Ti-29 in sour brine were reduced by a factor of about 2X or less compared to those in air. These S-N fatigue lives in sour brine were 8X-10X better than those in the steels in the sour brine. Thus, for sour-service applications in the intermediate- and high-cycle fatigue regimes, Ti-29 has significantly better sour corrosion fatigue performance than that of steels with comparable strength levels.


2013 ◽  
Vol 96 (8) ◽  
pp. 2593-2597 ◽  
Author(s):  
Martin Härtelt ◽  
Stefan Fünfschilling ◽  
Thomas Schwind ◽  
Heinz Riesch-Oppermann ◽  
Theo Fett ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document