Volume 6: Materials and Fabrication
Latest Publications


TOTAL DOCUMENTS

110
(FIVE YEARS 0)

H-INDEX

6
(FIVE YEARS 0)

Published By ASMEDC

0791847578

Author(s):  
I. Simonovski ◽  
L. Cizelj

A plane-strain finite element crystal plasticity model of microstructurally small stationary crack emanating at a surface grain in a 316L stainless steel is proposed. The model consisting of 212 randomly shaped, sized and oriented grains is loaded monotonically in uniaxial tension to a maximum load of 1.12Rp0.2 (280 MPa). The influence that a random grain structure imposes on a Stage I crack is assessed by calculating the crack tip opening (CTOD) and sliding displacements (CTSD), considering also different crystallographic orientations. It is shown that certain crystallographic orientations result in a cluster of soft grains around the crack-containing grain. In these cases the crack tip can become apart of the localized strain, resulting in a large CTOD value. This effect, resulting from the overall grain orientations and sizes, can have a greater impact on the CTOD than the local grain orientation. On the other hand, when a localized soft response is formed away from the crack, the localized strain does not affect the crack tip directly, resulting in a small CTOD value. The resulting difference in CTOD can be up to a factor of 4, depending upon the crystallographic set. Grains as far as 6xCracklength significantly influence that crack tip parameters. It was also found the a larger crack-containing grain tends to increase the CTOD.


Author(s):  
P. Dong ◽  
Z. Cao

In this paper, the mechanics basis underlying the parametric through-thickness residual stress profiles proposed for the revised API 579 Appendix E are presented. The proposed residual stress profiles are governed to a large extent by a unified parametric function form valid for a broad spectrum of pipe and vessel welds. The functional relationship is established based on the comprehensive knowledge base developed within a recent major international joint industry project (JIP) under the auspice of Pressure Vessel Research Council (PVRC) and a large amount of residuals stress measurement data from recent literature. One of the most important features associated with the proposed revision is that residual stress profile is uniquely determined by two important sets of governing parameters: (1) parameters relevant to pipe geometry, i.e., r/t and t; (2) a parameter related to welding linear heat input Q (J/mm), referred to as the characteristic heat input Qˆ which has a dimension of J/mm3. As a result, the corresponding through-wall residual stress distribution exhibits a continuous change as a function of r/t, t, and Qˆ, instead of falling into a few discrete and unrelated profiles, as seen in the current Codes and Standards.


Author(s):  
B. Dogan

The present international socio-economic drive for renewable energy use for sustainable development with environmental protection directs attention to hydrogen as energy carrier. Hydrogen production and storage, and fuel cell (FC) technologies have been intensively worked on in Europe including European Commission (EC) supported projects via Framework Programs (FPs), as well as various national and international cooperative programs including those of International Energy Agency (IEA) and International Partnership for Hydrogen Economy (IPHE). The hydrogen storage is required for transport applications as dense as possible to achieve high gravimetric and volumetric density. The storage of hydrogen in liquid, gas and solid forms are associated with low temperature cooling, higher pressures up to 700 bar and integrated higher volume and weight, respectively. The liquid and pressurized gas storage systems are relatively advanced in present applications. On the other hand, the system safety and reliability, hence the public acceptance as well as economic feasibility have been the main drives for solid and hybrid hydrogen applications. The use of solid hydrogen is predicted by the automotive industry to ultimately dominate the hydrogen transport application market. The bottleneck in solid hydrogen application is metal hydride production to meet the quantitative targets for vehicles mainly following the US DOE goals set for years up to 2015. System requirements need also be met for a present target of e.g. 75kWel fuel cell cars aiming at a 400km driving distance with 4 kg of hydrogen. This necessitates a gravimetric storage density of over 6 wt. per cent. The present paper will address the hydrogen storage tank system for on-board applications including storage tank materials, system design, production technologies and system safety. An overview will be presented on the current state-of-the-art of European and international progress on storage materials integrated into on-board storage tank system. The European current programs on hydrogen storage technologies for transport applications including design, safety and system reliability will be addressed.


Author(s):  
Yogendra S. Garud

Wall thinning in pressure retaining components, especially due to the flow-accelerated corrosion, has been a significant factor affecting the safety and unplanned system downtimes. On the other hand, overestimating the impact of possible wall thinning often leads to unnecessary or expensive inspections and replacements. The simplified or quick (short-cut) methods of analysis and prediction often lack the requisite degree of accuracy and confidence. This paper presents a few techniques for better analysis of the wall thinning data to address these issues. These techniques make use of the statistical methods, pattern recognition, and optimization to perform a robust data filtering and thinning rate estimation that accounts for measurement uncertainty. The techniques are discussed with application to a large database and an inspection program. The impact of these analytical improvements is presented in comparison with results of the simplified method of analysis. The results include both the margin on remaining life and the projected wall thinning rates, with implications for inspections.


Author(s):  
Wim De Waele ◽  
Rudi Denys ◽  
Antoon Lefevre

Multiple defects in welds, when detected, have to be assessed for interaction. Current defect interaction rules are largely based on linear elastic fracture mechanics principles (brittle material behaviour). Pipeline welding codes, however, specify toughness requirements to ensure ductile failure by plastic collapse. Therefore, the use of current (elastic) interaction rules for ductile girth welds can lead to unnecessary and possibly harmful weld repairs or cutouts. This paper reports on an assessment of the engineering significance of existing pipeline specific interaction criteria and on the development of new criteria. Rules for the interaction of coplanar surface breaking defects and ductile material behaviour have been developed on the basis of the performance requirement of remote yielding. The results of large-scale tensile tests illustrate that current interaction rules have a high degree of conservatism for plastic collapse conditions. The test data have been used to demonstrate that the developed procedure can be safely used for ductile girth welds.


Author(s):  
B. Nandulal ◽  
B. N. Rao ◽  
C. Lakshmana Rao

This paper presents an enriched meshless method based on an improved moving least-square approximation (IMLS) method for fracture analysis of cracks in homogeneous, isotropic, linear-elastic, two-dimensional bimaterial solids, subject to mixed-mode loading conditions. The method involves an element-free Galerkin formulation in conjunction with IMLS and a new enriched basis functions to capture the singularity field in linear-elastic bi-material fracture mechanics. In the IMLS method, the orthogonal function system with a weight function is used as the basis function. The IMLS has higher computational efficiency and precision than the MLS, and will not lead to an ill-conditioned system of equations. The proposed enriched basis function can be viewed as a generalized enriched basis function, which degenerates to a linear-elastic basis function when the bimaterial constant is zero. Numerical examples are presented to illustrate the computational efficiency and accuracy of the proposed method.


Author(s):  
Peter J. Bouchard ◽  
Lyndon Edwards ◽  
Anastasius G. Youtsos ◽  
Roger Dennis

Finite element weld residual stress modelling procedures involve complex non-linear analyses where many assumptions and approximations have to be made by the analyst. Weld modelling guidelines for inclusion in the R6 defect assessment procedure are in preparation and will be accompanied by a series of validation benchmarks that can be used to evaluate the accuracy of weld modelling procedures and assess their suitability for use in fracture assessments. It is intended to base one of the benchmarks on a stainless steel bead-on-plate weldment that has been extensively studied by members of Task Group 1 of the NeT European Network project. This paper uses round robin residual stress measurements from the NeT project to derive a statistically based ‘best estimate’ distribution of transverse stress passing through the wall-section at mid-length of the bead-on-plate weldment. The accuracy of a state-of-the-art residual stress prediction is benchmarked against the best estimate measurements using a root mean square error analysis and comparisons of decomposed components of stress. The appropriateness of using the predicted residual stresses in fracture assessments is assessed by comparing stress intensity factors based on the measured and predicted distributions of stress. The results from these studies will be used to help establish accuracy targets and acceptance criteria for the welding benchmark.


Author(s):  
Dominique Moinereau ◽  
Anna Dahl ◽  
Ste´phane Chapuliot ◽  
David Lidbury

Within framework of 5th EC European SMILE project, some R&D actions have been conducted to demonstrate, to model and to validate the beneficial warm pre-stress (WPS) effect regarding the risk of brittle failure in a RPV assessment. An important experimental work has been conducted including classical WPS type experiments on CT specimens on usual RPV steels, and one PTS type transient on a large cracked cylinder. All experimental results confirm the beneficial effect of warm pre-stress, with a significant increase of the materials resistance regarding the risk of brittle failure. The experiments have been analyzed using fracture mechanics, including both engineering methods (Chell, Haigh, Wallin) and more refined analyses based on local approach to fracture (‘modified Beremin’ model). Following a short description of WPS concept, the paper summarizes the main experimental results and presents a synthesis of mechanical analyses involving engineering approaches and numerical analyses.


Author(s):  
Kunio Hasegawa ◽  
Katsuyuki Shibata

Wall thinning caused by the flow of water in power piping systems became a major concern to the nuclear power industries. ASME Code Case N-597-3, “Requirements for Analytical Evaluation of Pipe Wall Thinning,” provides procedures and criteria for Code Class 2 and 3 piping for the evaluation of wall thinning. However, analytical evaluation procedure for Class 1 piping is not provideed in the Code Case. Recent full-scale experiments on locally thinned pipes have supported the development of more contemporary failure strength evaluation methodology for Class 1 piping. These evaluation methodologies are applicable for the loading type of bending, tensile or cyclic bending load. Prior to the failure by bending moment, tensile load or cyclic/seismic load, locally wall thinned pipes shall be considered pressure blow out by the internal pressure itself. This paper introduces the failure of a uniformly thinned cylinder by an internal pressure and describes limitation on wall thinning depth to avoid pressure blow out for Class 1 piping.


Author(s):  
Toru Osaki ◽  
Hiroshi Matsuzawa

Reconstitution in this paper means to constitute the original size compact specimen, which is made of the insert cut out from tested specimen and tubs welded to the insert. It is a promising technique to secure an adequate number of surveillance specimens for long-term operation of nuclear power plants. The fracture toughness of each reactor vessel of pressurized water reactors in Japan is measured periodically by 1/2T compact surveillance specimens, and is applied to assess the structural integrity of the reactor vessel under pressurized thermal shock loads. [1] This practice should be continued and enhanced if possible, after the full use of originally installed specimens, because its fracture toughness is lower than before. Reconstitution of irradiated 1/2T compact specimens to the original size was studied and demonstrated. Reconstituted specimens were composed of an irradiated material called an insert and un-irradiated tabs welded to the insert. It was demonstrated that the central part of the insert near the crack tip was not annealed by the thermal transient during welding if properly adjusted YAG laser welding was applied. Crack-tip opening and compliance before and after reconstitution were investigated by testing and analysis. Testing and analysis of un-irradiated specimens before reconstitution showed that the plastic deformation expanded to an area wider than 6 mm, the half width of the insert if it was a reconstituted specimen. The material had medium fracture toughness. The reconstituted specimen of the same material showed almost the same fracture toughness, although the weld could not be yielded as the insert, which could affect the crack opening. The crack opening was immune to the change of the deformation far from the crack tip. Correlation between J at 2.5 mm crack extension and plastic deformation width, and the effects of short time annealing of the insert far from the crack tip during welding were studied. Integrating the results, the conditions for reconstituting the 1/2T compact specimen were settled. The reconstituted specimen with irradiated insert designed to meet the conditions showed little change in fracture toughness.


Sign in / Sign up

Export Citation Format

Share Document