Particle Swarm Optimization (PSO) Fuzzy Systems and NARMAX Approaches Trade-Off Applied to Thermal-Vacuum Chamber Identification

Author(s):  
Ernesto Araujo ◽  
Ubiratan S. Freitas ◽  
Elbert A. N. Macau ◽  
Leandro S. Coelho ◽  
Luis A. Aguirre

Two nonlinear identification methods are employed in this paper in an experimental comparative approach to generate dynamical models for a thermal-vacuum system. Used for space environment emulation and satellite qualification, a thermal-vacuum chamber presents highly nonlinear and time-delay characteristics. While, in the first nonlinear identification approach, Particle Swarm Optimization (PSO) derive a Takagi-Sugeno fuzzy model, the second one was based on NARMAX polynomial identification technique. PSO is a stochastic global optimization technique that uses a population of particles, where the position and velocity of each particle represent a solution to the problem. It is employed as an auxiliary mechanism for finding out a T-S fuzzy model. The NARMAX polynomial identification technique uses a criterion called Error Reduction Ratio (ERR) computed by employing an orthogonal least squares method whose terms are selected in a forward-regression manner. Results indicate that both methods are feasible solutions for eliciting models from the available data.

Geophysics ◽  
2019 ◽  
Vol 84 (5) ◽  
pp. R767-R781 ◽  
Author(s):  
Mattia Aleardi ◽  
Silvio Pierini ◽  
Angelo Sajeva

We have compared the performances of six recently developed global optimization algorithms: imperialist competitive algorithm, firefly algorithm (FA), water cycle algorithm (WCA), whale optimization algorithm (WOA), fireworks algorithm (FWA), and quantum particle swarm optimization (QPSO). These methods have been introduced in the past few years and have found very limited or no applications to geophysical exploration problems thus far. We benchmark the algorithms’ results against the particle swarm optimization (PSO), which is a popular and well-established global search method. In particular, we are interested in assessing the exploration and exploitation capabilities of each method as the dimension of the model space increases. First, we test the different algorithms on two multiminima and two convex analytic objective functions. Then, we compare them using the residual statics corrections and 1D elastic full-waveform inversion, which are highly nonlinear geophysical optimization problems. Our results demonstrate that FA, FWA, and WOA are characterized by optimal exploration capabilities because they outperform the other approaches in the case of optimization problems with multiminima objective functions. Differently, QPSO and PSO have good exploitation capabilities because they easily solve ill-conditioned optimizations characterized by a nearly flat valley in the objective function. QPSO, PSO, and WCA offer a good compromise between exploitation and exploration.


2012 ◽  
Vol 2012 ◽  
pp. 1-21 ◽  
Author(s):  
S. Sakinah S. Ahmad ◽  
Witold Pedrycz

The study is concerned with data and feature reduction in fuzzy modeling. As these reduction activities are advantageous to fuzzy models in terms of both the effectiveness of their construction and the interpretation of the resulting models, their realization deserves particular attention. The formation of a subset of meaningful features and a subset of essential instances is discussed in the context of fuzzy-rule-based models. In contrast to the existing studies, which are focused predominantly on feature selection (namely, a reduction of the input space), a position advocated here is that a reduction has to involve both data and features to become efficient to the design of fuzzy model. The reduction problem is combinatorial in its nature and, as such, calls for the use of advanced optimization techniques. In this study, we use a technique of particle swarm optimization (PSO) as an optimization vehicle of forming a subset of features and data (instances) to design a fuzzy model. Given the dimensionality of the problem (as the search space involves both features and instances), we discuss a cooperative version of the PSO along with a clustering mechanism of forming a partition of the overall search space. Finally, a series of numeric experiments using several machine learning data sets is presented.


IEEE Access ◽  
2020 ◽  
Vol 8 ◽  
pp. 116132-116147 ◽  
Author(s):  
Musheer Ahmad ◽  
Ishfaq Ahmad Khaja ◽  
Abdullah Baz ◽  
Hosam Alhakami ◽  
Wajdi Alhakami

Author(s):  
Hossein Mansourinejad ◽  
Kamran Daneshjou

The performance function of many engineering structures and mechanisms is usually complex, highly nonlinear, and described in the implicit form. The reliability analysis of these structures using common methods requires high cost and time. In this paper, a new approach for reliability analysis of engineering structures and mechanisms by using the particle swarm optimization algorithm is presented. The advantages of this method in comparison with the conventional methods are its simplicity and accuracy. In addition, the limitations of the common previously presented methods are eliminated by the proposed method. This approach is based on a new redefinition of most probable point in the reliability analysis. To evaluate the performance and validity of the proposed method, some examples in the reliability analysis of various functions are employed. Finally, the superiority of the proposed method in performance and accuracy is demonstrated and compared to the conventional methods and it can be used for reliability analysis of complicated engineering structures.


Sign in / Sign up

Export Citation Format

Share Document