Assessing the performances of recent global search algorithms using analytic objective functions and seismic optimization problems

Geophysics ◽  
2019 ◽  
Vol 84 (5) ◽  
pp. R767-R781 ◽  
Author(s):  
Mattia Aleardi ◽  
Silvio Pierini ◽  
Angelo Sajeva

We have compared the performances of six recently developed global optimization algorithms: imperialist competitive algorithm, firefly algorithm (FA), water cycle algorithm (WCA), whale optimization algorithm (WOA), fireworks algorithm (FWA), and quantum particle swarm optimization (QPSO). These methods have been introduced in the past few years and have found very limited or no applications to geophysical exploration problems thus far. We benchmark the algorithms’ results against the particle swarm optimization (PSO), which is a popular and well-established global search method. In particular, we are interested in assessing the exploration and exploitation capabilities of each method as the dimension of the model space increases. First, we test the different algorithms on two multiminima and two convex analytic objective functions. Then, we compare them using the residual statics corrections and 1D elastic full-waveform inversion, which are highly nonlinear geophysical optimization problems. Our results demonstrate that FA, FWA, and WOA are characterized by optimal exploration capabilities because they outperform the other approaches in the case of optimization problems with multiminima objective functions. Differently, QPSO and PSO have good exploitation capabilities because they easily solve ill-conditioned optimizations characterized by a nearly flat valley in the objective function. QPSO, PSO, and WCA offer a good compromise between exploitation and exploration.

2016 ◽  
Vol 138 (8) ◽  
Author(s):  
Forrest W. Flocker ◽  
Ramiro H. Bravo

The particle swarm optimization (PSO) method is becoming a popular optimizer within the mechanical design community because of its simplicity and ability to handle a wide variety of objective functions that characterize a proposed design. Typical examples arising in mechanical design are nonlinear objective functions with many constraints, which typically arise from the various design specifications. The method is particularly attractive to mechanical design because it can handle discontinuous functions that occur when the designer must choose from a discrete set of standard sizes. However, as in other optimizers, the method is susceptible to converging to a local rather than global minimum. In this paper, convergence criteria for the PSO method are investigated and an algorithm is proposed that gives the user a high degree of confidence in finding the global minimum. The proposed algorithm is tested against five benchmark optimization problems, and the results are used to develop specific guidelines for implementation.


Author(s):  
Singiresu S. Rao ◽  
Kiran K. Annamdas

Particle swarm methodologies are presented for the solution of constrained mechanical and structural system optimization problems involving single or multiple objective functions with continuous or mixed design variables. The particle swarm optimization presented is a modified particle swarm optimization approach, with better computational efficiency and solution accuracy, is based on the use of dynamic maximum velocity function and bounce method. The constraints of the optimization problem are handled using a dynamic penalty function approach. To handle the discrete design variables, the closest discrete approach is used. Multiple objective functions are handled using a modified cooperative game theory approach. The applicability and computational efficiency of the proposed particle swarm optimization approach are demonstrated through illustrate examples involving single and multiple objectives as well as continuous and mixed design variables. The present methodology is expected to be useful for the solution of a variety of practical engineering design optimization problems.


Author(s):  
Amir Nejat ◽  
Pooya Mirzabeygi ◽  
Masoud Shariat-Panahi

In this paper, a new robust optimization technique with the ability of solving single and multi-objective constrained design optimization problems in aerodynamics is presented. This new technique is an improved Territorial Particle Swarm Optimization (TPSO) algorithm in which diversity is actively preserved by avoiding overcrowded clusters of particles and encouraging broader exploration. Adaptively varying “territories” are formed around promising individuals to prevent many of the lesser individuals from premature clustering and encouraged them to explore new neighborhoods based on a hybrid self-social metric. Also, a new social interaction scheme is introduced which guided particles towards the weighted average of their “elite” neighbors’ best found positions instead of their own personal bests which in turn helps the particles to exploit the candidate local optima more effectively. The TPSO algorithm is developed to take into account multiple objective functions using a Pareto-Based approach. The non-dominated solutions found by swarm are stored in an external archive and nearest neighbor density estimator method is used to select a leader for the individual particles in the swarm. Efficiency and robustness of the proposed algorithm is demonstrated using multiple traditional and newly-composed optimization benchmark functions and aerodynamic design problems. In final airfoil design obtained from the Multi Objective Territorial Particle Swarm Optimization algorithm, separation point is delayed to make the airfoil less susceptible to stall in high angle of attack conditions. The optimized airfoil also reveals an evident improvement over the test case airfoil across all objective functions presented.


Author(s):  
Imam Tahyudin ◽  
Hidetaka Nambo

<div class="page" title="Page 1"><div class="layoutArea"><div class="column"><p>Particle Swarm Optimization (PSO) has been applied to solve optimization problems in various fields, such as Association Rule Mining (ARM) of numerical problems. However, PSO often becomes trapped in local optima. Consequently, the results do not represent the overall optimum solutions. To address this limitation, this study aims to combine PSO with the Cauchy distribution (PARCD), which is expected to increase the global optimal value of the expanded search space. Furthermore, this study uses multiple objective functions, i.e., support, confidence, comprehensibility, interestingness and amplitude. In addition, the proposed method was evaluated using benchmark datasets, such as the Quake, Basket ball, Body fat, Pollution, and Bolt datasets. Evaluation results were compared to the results obtained by previous studies. The results indicate that the overall values of the objective functions obtained using the proposed PARCD approach are satisfactory.</p></div></div></div>


Author(s):  
Mehmet Sinan Hasanoglu ◽  
Melik Dolen

Constrained optimization problems constitute an important fraction of optimization problems in the mechanical engineering domain. It is not uncommon for these problems to be highly-constrained where a specialized approach that aims to improve constraint satisfaction level of the whole population as well as finding the optimum is deemed useful especially when the objective functions are very costly. A new algorithm called Feasibility Enhanced Particle Swarm Optimization (FEPSO), which treats feasible and infeasible particles differently, is introduced. Infeasible particles in FEPSO do not need to evaluate objective functions and fly only based on social attraction depending on a single violated constraint, called the activated constraint, which is selected at each iteration based on constraint priorities and flight occurs only along dimensions of the search space to which the activated constraint is sensitive. To ensure progressive improvement of constraint satisfaction, particles are not allowed to violate a satisfied constraint in FEPSO. The highly-constrained four-stage gear train problem and its two variants introduced in this paper are used to assess the effectiveness of FEPSO. The results suggest that FEPSO is effective and consistent in obtaining feasible points, finding good solutions, and improving the constraint satisfaction level of the swarm as a whole.


2021 ◽  
Author(s):  
Moritz Mühlenthaler ◽  
Alexander Raß ◽  
Manuel Schmitt ◽  
Rolf Wanka

AbstractMeta-heuristics are powerful tools for solving optimization problems whose structural properties are unknown or cannot be exploited algorithmically. We propose such a meta-heuristic for a large class of optimization problems over discrete domains based on the particle swarm optimization (PSO) paradigm. We provide a comprehensive formal analysis of the performance of this algorithm on certain “easy” reference problems in a black-box setting, namely the sorting problem and the problem OneMax. In our analysis we use a Markov model of the proposed algorithm to obtain upper and lower bounds on its expected optimization time. Our bounds are essentially tight with respect to the Markov model. We show that for a suitable choice of algorithm parameters the expected optimization time is comparable to that of known algorithms and, furthermore, for other parameter regimes, the algorithm behaves less greedy and more explorative, which can be desirable in practice in order to escape local optima. Our analysis provides a precise insight on the tradeoff between optimization time and exploration. To obtain our results we introduce the notion of indistinguishability of states of a Markov chain and provide bounds on the solution of a recurrence equation with non-constant coefficients by integration.


Author(s):  
Malek Sarhani ◽  
Stefan Voß

AbstractBio-inspired optimization aims at adapting observed natural behavioral patterns and social phenomena towards efficiently solving complex optimization problems, and is nowadays gaining much attention. However, researchers recently highlighted an inconsistency between the need in the field and the actual trend. Indeed, while nowadays it is important to design innovative contributions, an actual trend in bio-inspired optimization is to re-iterate the existing knowledge in a different form. The aim of this paper is to fill this gap. More precisely, we start first by highlighting new examples for this problem by considering and describing the concepts of chunking and cooperative learning. Second, by considering particle swarm optimization (PSO), we present a novel bridge between these two notions adapted to the problem of feature selection. In the experiments, we investigate the practical importance of our approach while exploring both its strength and limitations. The results indicate that the approach is mainly suitable for large datasets, and that further research is needed to improve the computational efficiency of the approach and to ensure the independence of the sub-problems defined using chunking.


Energies ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4613
Author(s):  
Shah Fahad ◽  
Shiyou Yang ◽  
Rehan Ali Khan ◽  
Shafiullah Khan ◽  
Shoaib Ahmed Khan

Electromagnetic design problems are generally formulated as nonlinear programming problems with multimodal objective functions and continuous variables. These can be solved by either a deterministic or a stochastic optimization algorithm. Recently, many intelligent optimization algorithms, such as particle swarm optimization (PSO), genetic algorithm (GA) and artificial bee colony (ABC), have been proposed and applied to electromagnetic design problems with promising results. However, there is no universal algorithm which can be used to solve engineering design problems. In this paper, a stochastic smart quantum particle swarm optimization (SQPSO) algorithm is introduced. In the proposed SQPSO, to tackle the premature convergence problem in order to improve the global search ability, a smart particle and a memory archive are adopted instead of mutation operations. Moreover, to enhance the exploration searching ability, a new set of random numbers and control parameters are introduced. Experimental results validate that the adopted control policy in this work can achieve a good balance between exploration and exploitation. Finally, the SQPSO has been tested on well-known optimization benchmark functions and implemented on the electromagnetic TEAM workshop problem 22. The simulation result shows an outstanding capability of the proposed algorithm in speeding convergence compared to other algorithms.


2021 ◽  
Vol 11 (2) ◽  
pp. 839
Author(s):  
Shaofei Sun ◽  
Hongxin Zhang ◽  
Xiaotong Cui ◽  
Liang Dong ◽  
Muhammad Saad Khan ◽  
...  

This paper focuses on electromagnetic information security in communication systems. Classical correlation electromagnetic analysis (CEMA) is known as a powerful way to recover the cryptographic algorithm’s key. In the classical method, only one byte of the key is used while the other bytes are considered as noise, which not only reduces the efficiency but also is a waste of information. In order to take full advantage of useful information, multiple bytes of the key are used. We transform the key into a multidimensional form, and each byte of the key is considered as a dimension. The problem of the right key searching is transformed into the problem of optimizing correlation coefficients of key candidates. The particle swarm optimization (PSO) algorithm is particularly more suited to solve the optimization problems with high dimension and complex structure. In this paper, we applied the PSO algorithm into CEMA to solve multidimensional problems, and we also add a mutation operator to the optimization algorithm to improve the result. Here, we have proposed a multibyte correlation electromagnetic analysis based on particle swarm optimization. We verified our method on a universal test board that is designed for research and development on hardware security. We implemented the Advanced Encryption Standard (AES) cryptographic algorithm on the test board. Experimental results have shown that our method outperforms the classical method; it achieves approximately 13.72% improvement for the corresponding case.


Sign in / Sign up

Export Citation Format

Share Document