Numerical Prediction of Constraint Effect of Creep Crack Growth

Author(s):  
Masataka Yatomi ◽  
Kamran M. Nikbin

This paper presents the effect of constraint on creep crack growth (CCG) using FE analysis based on the stress and strain rate state at the crack tip. The comparison is made by modelling C(T) specimen tests under plane stress and plane strain conditions using creep properties of three different steels (C-Mn steel, P91 steel, and 316H austenitic steel). In addition, in order to examine the constraint effect on CCG due to geometry single edge notch specimen (SENT), centre cracked tension specimen (CCT) and three point bending (3PB) specimen have also been analysed. In all cases it is found that when the reference stress under plane strain conditions is higher than the yield stress, there is little difference between CCG rates under plane stress and plane strain.

1986 ◽  
Vol 108 (2) ◽  
pp. 186-191 ◽  
Author(s):  
K. M. Nikbin ◽  
D. J. Smith ◽  
G. A. Webster

This paper is concerned with assessing the integrity of cracked engineering components which operate at elevated temperatures. Fracture mechanics parameters are discussed for describing creep crack growth. A model is presented for expressing growth rate in terms of creep damage accumulation in a process zone ahead of the crack tip. Correlations are made with a broad range of materials exhibiting a wide spread of creep ductilities. It is found that individual propagation rates can be predicted with reasonable accuracy from a knowledge only of the material uni-axial creep ductility. An engineering creep crack growth assessment diagram is proposed which is independent of material properties but which is sensitive to the state of stress at the crack tip. Approximate bounds are presented for plane stress and plane strain situations and it is shown that crack growth rates about fifty times faster are expected under plane strain conditions than when plane stress prevails.


Author(s):  
Kuk-Hee Lee ◽  
Yun-Jae Kim ◽  
Robert A. Ainsworth ◽  
David Dean

This paper proposes a method to determine the elastic follow-up factors for C(t)-integral under secondary stress. The rate of creep crack growth for transient creep is correlated with C(t)-integral. The elastic follow-up behaviour, which occurs in structures under secondary loading, prevents a relaxation of stress during transient creep. Thus, both the value of C(t) and creep crack growth increase with an increasing elastic follow-up. An estimation solution for C(t) has been proposed by Ainsworth and Dean based on the reference stress method. In order to predict the value of C(t) using this solution, an independent method to determine the elastic follow-up factors for cracked bodies is required. This paper proposes that the elastic follow-up factors for C(t) can be determined by elastic-plastic analyses by using the plastic-creep analogy. Finite element analyses have been performed to verify this method.


Author(s):  
Masataka Yatomi ◽  
Kamran M. Nikbin

The paper discusses numerically based virtual techniques of creep crack growth predictions in a fracture mechanics component. The material properties used are for 316H stainless steels and the constitutive behaviour of the steel is described by a power law creep model. A damage-based approach is used to predict the crack propagation rate in compact tension (C(T)) specimens and the data are correlated against an independently determined C* parameter. Elastic-plastic-creep analyses are performed using two different crack growth criteria to predict crack extension under plane stress and plane strain conditions. The NSW and NSW-MOD strain exhaustion models are applied to compare to the experimental data and FE predictions. The plane strain crack growth rate predicted from the numerical analysis is found to be less conservative than the plane strain NSW model but more conservative than plane strain NSW-MOD model, for values of C* within the limits of the present creep crack growth testing standards. At higher loads and C* values, the plane strain crack growth rates, predicted using an elastic-plastic-creep material response, approach is considered and compared to the plane strain NSW-MOD model.


Author(s):  
Masataka Yatomi ◽  
Noel P. O’Dowd ◽  
Kamran M. Nikbin

In this work a computational study of creep crack growth in a carbon manganese steel is presented. The constitutive behaviour of the steel is described by a power law creep model and the accumulation of creep damage is accounted for through the use of a well-established model for void growth in creeping materials. Two dimensional finite element analyses have been performed for a compact tension specimen and it has been found that the predicted crack growth rate under plane strain conditions approaches that under plane stress conditions at high C* levels. Furthermore it has been shown, both experimentally and numerically, that an increase in test temperature causes the convergence of the cracking rate to occur at higher values of C*. This trend may be explained by the influence of crack-tip plasticity, which reduces the relative difference in constraint between plane stress and plane strain conditions. The constraint effect has been quantified through the use of a two-parameter characterisation of the crack tip fields under creep conditions.


1981 ◽  
Vol 16 (2) ◽  
pp. 137-143 ◽  
Author(s):  
D J Smith ◽  
G A Webster

Estimates of stress intensity factor, K, reference stress, σref, and creep parameter, C∗, have been made for compact tension (CT) and double cantilever beam (DCB) test-pieces containing side grooves. Limit analysis techniques were used to determine the latter two parameters. It is shown that the expressions developed for σref are sensitive to the collapse mode proposed, whereas those for C∗ are largely independent. Comparisons of predictions of creep crack growth data on CT and DCB specimens of a 1 per cent CrMoV steel in terms of K and σref have revealed different dependences for the two geometries, suggesting that neither parameter gives satisfactory correlations. Better overall agreement is obtained with the C∗ parameter, even though gross creep deformations were not observed. It is suggested that further improvement may be gained with this parameter if more accurate estimates of C∗, which allow the inclusion of elastic terms, are used.


1986 ◽  
Vol 21 (2) ◽  
pp. 109-115
Author(s):  
T H Hyde ◽  
K C Low

An approximate method, based on the reference stress concept, for carrying out ‘moving-crack’ calculations, under creep conditions, is presented. Creep crack growth is assumed to be related to the C∗ parameter. The predictions obtained correlate well with detailed, ‘moving-crack’, finite element calculations. Preliminary calculations, to assess the adequacy of finite element meshes and the effect of variations in material properties on the accuracy of predictions, can be carried out quickly and relatively cheaply. The usefulness of the technique is illustrated by using it to show the effect of the magnitude of the crack growth increment assumed and of the value of critical crack tip opening displacement (the initiation parameter assumed) used.


Sign in / Sign up

Export Citation Format

Share Document