edge notch
Recently Published Documents


TOTAL DOCUMENTS

209
(FIVE YEARS 35)

H-INDEX

16
(FIVE YEARS 3)

2022 ◽  
Vol 23 (1) ◽  
pp. 268-281
Author(s):  
Hanan EL BHILAT ◽  
MABCHOUR Hassan ◽  
SALMI Houda ◽  
HACHIM Abdelilah ◽  
EL HAD Khalid

The aim of the present paper is to study the effect of multi-recycling on the fracture behavior of high impact polystyrene from disposable cups. After collecting and washing the material, it was subjected to six cycles of recycling. After each cycle, it was subjected to tensile tests to determine the R-curves. The theory of the J-integral contour has been used for the development of a characterization method of the fracture strength appropriate to the case of this non-linear elastoplastic polymer material. To this end, the method of multiple specimens (Single edge notch tension SENT) of thin thickness was used, by introducing cracks of the same lengths to several identical test pieces. The results suggested a slight decrease in crack resistance of recycled high impact polystyrene, especially during the first cycle, demonstrated by a comparison of JIC values related to initiation of crack propagation. The fracture energy absorbed as a function of the cycles suggested a weakening within the material. ABSTRAK: Tujuan kajian ini adalah bagi mengkaji kesan tindak balas pada pelbagai peringkat-kitar semula ke atas kerapuhan polisterin berimpak tinggi pada cawan pakai buang. Selepas mengumpul dan membasuh cawan ini, terdapat enam peringkat kitar semula. Pada setiap peringkat, ianya akan melalui ujian tegangan bagi mendapatkan lengkung-R. Teori kamiran-J kontur telah digunakan bagi mencipta kaedah khas bagi mengkaji kekuatan retakan bersesuaian bagi kes bahan polimer elastoplastik yang tidak-linear. Sehingga kini, kaedah Regangan Tepi Takuk Tunggal (SENT) telah digunakan pada spesimen berketebalan rendah, dengan menghasilkan keretakan sama panjang di permulaan kajian di buat pada pelbagai bahan uji yang serupa. Dapatan kajian menunjukkan rintangan pada retakan telah berkurang sedikit pada polisterin kitar semula berimpak tinggi, terutama pada kitaran pertama, yang ditunjukkan pada nilai JIC pada permukaan rambatan retakan awal. Tenaga kerapuhan yang meresap pada setiap kitaran menunjukkan bahan telah melemah dari dalam.


2021 ◽  
Vol 5 (10) ◽  
pp. 264
Author(s):  
Mohamed K. Hassan ◽  
Ahmed F. Mohamed ◽  
Khalil Abdelrazek Khalil ◽  
Mohammed Y. Abdellah

The mechanical and ring stiffness of glass fiber pipes are the most determining factors for their ability to perform their function, especially in a work environment with difficult and harmful conditions. Usually, these pipes serve in rough underground environments of desert and petroleum fields; therefore, they are subjected to multi-type deterioration and damage agents. In polymers and composite materials, corrosion is identified as the degradation in their properties. In this study, tension and compression tests were carried out before and after preconditioning in a corrosive agent for 60 full days to reveal corrosion influences. Moreover, the fracture toughness is measured using a standard single edge notch bending. Ring stiffness of such pipes which, are considered characteristic properties, is numerically evaluated using the extended finite element method before and after preconditioning. The results reported that both tensile and compressive strengths degraded nearly more than 20%. Besides the fracture toughness decrease, the stiffness ring strength is reduced, and the finite element results are in good agreement with the experimental findings.


Materials ◽  
2021 ◽  
Vol 14 (19) ◽  
pp. 5896
Author(s):  
Luka Starčevič ◽  
Nenad Gubeljak ◽  
Jožef Predan

The aim of this work was to include a local variation in material properties to simulate the fracture behaviour in a multi-pass mis-matched X-weld joint. The base material was welded with an over and under-match strength material. The local variation was represented in a finite element model with five material groups in the weld and three layers in the heat-affected zone. The groups were assigned randomly to the elements within a region. A three-point single edge notch bending (SENB) fracture mechanics specimen was analysed for two different configurations where either the initial crack is in the over or under-matched material side to simulate experimentally obtained results. The used modelling approach shows comparable crack propagation and stiffness behaviour, as well as the expected, scatter and instabilities of measured fracture behaviour in inhomogeneous welds.


2021 ◽  
pp. 004051752110472
Author(s):  
Xubo Zhang ◽  
Minger Wu ◽  
Han Bao

This study conducts alternative-basic-angle trapezoidal tearing and single-edge notch tearing tests on a polytetrafluoroethylene coated woven fabric, where the two methods are related through the basic angle of a trapezoid. The tearing process and failure modes are carefully examined, and load–displacement curves and tearing strength are analyzed. The tearing process comprises three stages, which are distinguished photographically or in different load–displacement curve sections. Corresponding to these stages, failure modes can be classified into three parts with varying extension directions. The effect of the basic angle is clearly illustrated. As the angle increases, three stages and parts appear in sequence; the tearing strength increases, but the larger one changes from weft to warp. The relationship between the tearing process and tearing strength is described. The three stages correspond to the increase in tearing strength, occurrence of the maximum tearing strength, and failure. Because the single-edge notch tearing method is more complex and important, it is the method that is studied mainly. Digital image correlation equipment is used to observe the strain distribution at the crack section. Moreover, the applications of four frequently used models are investigated. The results indicate that Thiele’s empirical formula offers the best simulation among the three tearing strength prediction models, and the theoretical stress distribution model also provides good simulation. Furthermore, a numerical simulation is conducted. The critical tearing strength and load–displacement curves before tearing initiates acquired through the simulation and test agree well. All results may provide basic data for future improvements in design theories.


2021 ◽  
Author(s):  
Lucien Laiarinandrasana ◽  
Clément Bertaux ◽  
Nicolas Amouroux ◽  
Cristian Ovalle Rodas

With the goal of ensuring the security of passengers for automotive industry, the present work addresses the ductile fracture process of plasticized PVC. Dedicated clamped single edge notch bending (SENB) specimens were used to characterize the mechanisms of crack initiation and propagation for the studied material. The exploitation of the experimental database associated with finite element simulation of the crack propagation allowed, on the one hand, the calibration factor η p of this specific SENB specimen to be established, as a function of the crack depth ratio. On the other hand, the fracture toughness of the studied plasticized PVC was estimated to be 10.8 kJ/m 2 , value which was close to that reported in the literature for modified PVC. By using this fracture toughness value, a methodology aiming at the prediction of ductile crack initiation of the PVC skin integrated into a real dashboard (full scale test) was proposed.


2021 ◽  
Vol 41 ◽  
pp. 27-41
Author(s):  
Nikhil Aditya ◽  
Jyoti Vimal

The purpose of this study is to investigate the impact of a V-shaped cutout on the buckling strength of E-glass epoxy composite laminates. In aircraft components, cutouts are more often used for inspection, ventilation, access to critical areas, fitting a particular component, and increasing the strength to weight ratio of the structure. In this paper, symmetric and antisymmetric laminates of E-Glass/Epoxy unidirectional are used and the effect of notch parameters such as notch radius(r), depth of the notch(h), and notch angle(α) is observed under monoaxial compression. Effects of end conditions and plate aspect ratio(l/b) are analyzed. It is observed that the notch radius does not have a considerable effect on buckling strength but the notch angle after 90⁰ shows a good dip in buckling loads as compared to 30⁰,45⁰, and 60⁰. Depth of notch and end conditions creates a considerable loss in buckling strength. As the h/b ratio is increased, the drop in buckling strength becomes significant. Clamped -pinned end condition of the plate gives a lower value of load multiplier as compared to clamped -clamped. As we increase the l/b ratio of the plate, buckling of the plate becomes easier. The position of the notch (a) also affects buckling strength which is maximum for a/l=0.25 and minimum for a/l=0.5.


2021 ◽  
Author(s):  
Yan-Hui Zhang ◽  
Matthew Doré

Abstract Most engineering components are subjected to cyclic loading in service and design against fatigue failure is often a key consideration in design. For fracture mechanics fatigue analysis, fatigue crack growth (FCG) tests are often required to determine the relevant Paris power law parameters for the material under the environment concerned. Standards allow use of different specimen geometries for FCG tests such as compact tension (CT), centre crack tension (CCT), single edge notch bend (SENB) and single edge notch tension (SENT). However, when selecting specimen geometry for fatigue crack growth rate (FCGR) testing, there is often doubt about which specimen geometry is more appropriate and whether they give similar FCGR. There is limited work to compare the FCGR between different specimen geometries. This paper first briefly introduces the guidance on FCG test specimen geometries in standards and compares the advantages and disadvantages of these specimen geometries. A comprehensive literature review is carried out to compare the FCGR data between different specimen geometries. FCGR tests are conducted on SENB, SENT and CCT specimens of C-Mn steel to investigate any effects of specimen symmetry/asymmetry and crack constraint on FCGR. Based on the literature review and test data, it is concluded that FCGR is independent of the specimen geometries examined.


2021 ◽  
Vol 11 (11) ◽  
pp. 5094
Author(s):  
Dayong Yang ◽  
Hamid Reza Karimi ◽  
Mohammad Reza Mohammad Aliha

As an inherent characteristic of materials, the fracture toughness is an important parameter to study the cracking behavior of asphalt concrete mixtures. Although material compositions and environmental conditions have a significant effect on the fracture toughness, for a certain material and testing environment, the test condition including the specimen configuration and loading type may also affect the obtained fracture toughness. In this paper, the effect of specimen configuration and applied loading type on the measured pure mode-I fracture toughness (KIc) is investigated. In order to achieve this purpose, using a typical asphalt mixture, four different test specimens including Semi-Circular Bend (SCB), Edge Notch Disc Bend (ENDB), Single Edge Notch Beam (SENB) and Edge Notch Diametral Compression (ENDC) disc are tested under pure mode I. The mentioned specimens have different shapes (i.e., full disc, semi-disc and rectangular beam) and are loaded either with symmetric three-point bending or diametral compressive force. The tests were performed at two low temperatures (−5 °C and −25 °C) and it was observed that the critical mode-I fracture toughness (KIc) was changed slightly (up to 10%) by changing the shape of the test specimen (i.e., disc and beam). This reveals that the fracture toughness is not significantly dependent on the shape of the test specimen. However, the type of applied loading has a significant influence on the determined mode I fracture toughness such that the fracture toughness determined by the disc shape specimen loaded by diametral compression (i.e., ENDC) is about 25% less than the KIc value with the same geometry but loaded with the three-point bending (i.e., ENDB) specimen. In addition, the fracture toughness values of all tested samples were increased linearly by decreasing the test temperature such that the fracture toughness ratio (KIc (@-25 °C)/KIc (@-5 °C)) was nearly constant for the ENDB, ENDC, SCB and SENB samples.


Sign in / Sign up

Export Citation Format

Share Document