Stress Predictions at Elbow Ends Under Internal Pressure and System Moments

Author(s):  
Jinhua Shi ◽  
Granson Lee ◽  
David Blythe ◽  
John Buckland ◽  
Yuebao Lei ◽  
...  

In order to assess postulated defects in the butt weld joining a 90 degree elbow to a seamless straight pipe, both axial and hoop stress components at this position are required. ASME III NB-3685 provides a method of calculating elbow stresses. However, this gives the maximum stress values in the elbow and applies to the central section of the bend. If these values are directly used in the defect assessments of welds at the ends of the elbow, the assessment results will be overly conservative. In order to obtain appropriate defect assessment results, more accurate axial and hoop stress distributions at the elbow ends are desirable. In this paper, the axial and hoop stress distributions at the elbow ends are predicted by deriving generalized stress relationships between the elbow end and the central section of the elbow, based on detailed finite element analyses and ASME III NB-3685 calculations. In order to do so, a series of small displacement elastic 3D finite element analyses have been performed. The finite element results were then compared with the ASME III NB-3685 stress predictions. Finally, the axial and hoop stress relationships between the elbow end and the central section of the elbow for internal pressure, in-plane moment and out-of-plane moment were derived. A comparison of the calculated stress values using the derived equations, the finite element analysis results and the ASME III NB-3685 stress calculations confirms that the derived stress relationships are appropriate to predict the axial and hoop stresses at the elbow ends. The objective of this paper is to show: 1) the ASME III NB-3685 stress calculations agree well with the 3D finite element analysis results at the central section of the elbow and 2) the derived stress relationships are appropriate to predict the axial and hoop stresses at the elbow ends.

1987 ◽  
Vol 110 ◽  
Author(s):  
James B. Koeneman

AbstractPredicting the stress state in bones is important to the understanding of bone remodeling and the long-term reliability of total joint implants. Beam theory, 2-D and 3-D finite element analysis have been used to calculate stress distributions. These finite element analyses of bone structures are progressing from crude models for which the clinical relevance has been questioned to an important tool which is necessary to understand stress related bone changes.


Author(s):  
Sathya Prasad Mangalaramanan

Abstract Statically admissible stress distributions are necessary to evaluate lower bound limit loads. Over the last three decades, several methods have been postulated to obtain these distributions using iterative elastic finite element analyses. Some of the pioneering techniques are the reduced modulus, r-node, elastic compensation, and linear matching methods, to mention a few. A new method, called the Bounded Elastic Moduli Multiplier Technique (BEMMT), is proposed and the theoretical underpinnings thereof are explained in this paper. BEMMT demonstrates greater robustness, more generality, and better stress distributions, consistently leading to lower-bound limit loads that are closer to elastoplastic finite element analysis estimates. BEMMT also questions the validity of the prevailing power law based stationary stress distributions. An accompanying research offers several case studies to validate this claim.


2015 ◽  
Vol 09 (03) ◽  
pp. 329-339 ◽  
Author(s):  
Sedat Guven ◽  
Koksal Beydemir ◽  
Serkan Dundar ◽  
Veysel Eratilla

ABSTRACT Objective: In this study, it is aimed to compare the distribution of stress on periodontal and peri-implant bone tissues in 3- and 5-unit-dental and implant-supported zirconia restorations using finite element analysis. Materials and Methods: Stress distribution formed in periodontal and peri-implant bone tissues as a result of chewing forces was analyzed in dental and implant-supported three-dimensional (3D) finite element models of zirconia restoration with 5-unit placed on the numbers of 43, 44, 45, 46, and 47 and with 3-unit placed on the number of 45, 46, and 47. Four different loading conditions were used. 200 N force was applied in 30° from the buccal inclination of number 43, 45, and 47 restorations separately and totally 850 N force was applied in 30° from the buccal inclination of whole restoration. The study was performed through static nonlinear analysis with the 3D finite element analysis method. Results: Stress accumulation in bone tissues in the tooth-supported model was found less than in implant-supported models. Stress accumulation was observed in the cervical portion of the implant in implant-supported models, and stress accumulation was observed surrounding bone of roots in tooth-supported models. The highest stress values were occurred in 5 unit implant-supported model in all loadings. Conclusion: In posterior restorations increased in the number of supported teeth and implant can reduce the destructive forces on periodontal and peri-implant bone tissues and may allow longer period retention of the restorations in the mouth.


2018 ◽  
Vol 29 (1) ◽  
pp. 30-35 ◽  
Author(s):  
Cleidiel Aparecido Araujo Lemos ◽  
Fellippo Ramos Verri ◽  
Joel Ferreira Santiago Júnior ◽  
Daniel Augusto de Faria Almeida ◽  
Victor Eduardo de Souza Batista ◽  
...  

Abstract The purpose of this study was to evaluate different retention systems (cement- or screw-retained) and crown designs (non-splinted or splinted) of fixed implant-supported restorations, in terms of stress distributions in implants/components and bone tissue, by 3-dimensional (3D) finite element analysis. Four 3D models were simulated with the InVesalius, Rhinoceros 3D, and SolidWorks programs. Models were made of type III bone from the posterior maxillary area. Models included three 4.0-mm-diameter Morse taper (MT) implants with different lengths, which supported metal-ceramic crowns. Models were processed by the Femap and NeiNastran programs, using an axial force of 400 N and oblique force of 200 N. Results were visualized as the von Mises stress and maximum principal stress (σmax). Under axial loading, there was no difference in the distribution of stress in implants/components between retention systems and splinted crowns; however, in oblique loading, cemented prostheses showed better stress distribution than screwed prostheses, whereas splinted crowns tended to reduce stress in the implant of the first molar. In the bone tissue cemented prostheses showed better stress distribution in bone tissue than screwed prostheses under axial and oblique loading. The splinted design only had an effect in the screwed prosthesis, with no influence in the cemented prosthesis. Cemented prostheses on MT implants showed more favorable stress distributions in implants/components and bone tissue. Splinting was favorable for stress distribution only for screwed prostheses under oblique loading.


Materials ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1152
Author(s):  
Rafał Nowak ◽  
Anna Olejnik ◽  
Hanna Gerber ◽  
Roman Frątczak ◽  
Ewa Zawiślak

The aim of this study was to compare the reduced stresses according to Huber’s hypothesis and the displacement pattern in the region of the facial skeleton using a tooth- or bone-borne appliance in surgically assisted rapid maxillary expansion (SARME). In the current literature, the lack of updated reports about biomechanical effects in bone-borne appliances used in SARME is noticeable. Finite element analysis (FEA) was used for this study. Six facial skeleton models were created, five with various variants of osteotomy and one without osteotomy. Two different appliances for maxillary expansion were used for each model. The three-dimensional (3D) model of the facial skeleton was created on the basis of spiral computed tomography (CT) scans of a 32-year-old patient with maxillary constriction. The finite element model was built using ANSYS 15.0 software, in which the computations were carried out. Stress distributions and displacement values along the 3D axes were found for each osteotomy variant with the expansion of the tooth- and the bone-borne devices at a level of 0.5 mm. The investigation showed that in the case of a full osteotomy of the maxilla, as described by Bell and Epker in 1976, the method of fixing the appliance for maxillary expansion had no impact on the distribution of the reduced stresses according to Huber’s hypothesis in the facial skeleton. In the case of the bone-borne appliance, the load on the teeth, which may lead to periodontal and orthodontic complications, was eliminated. In the case of a full osteotomy of the maxilla, displacements in the buccolingual direction for all the variables of the bone-borne appliance were slightly bigger than for the tooth-borne appliance.


Sign in / Sign up

Export Citation Format

Share Document