Re-Evaluation of Long-Term Creep Strength of Welded Joint of ASME Grade 91 Type Steel

Author(s):  
Masatsugu Yaguchi ◽  
Kaoru Nakamura ◽  
Sosuke Nakahashi

Creep rupture data of welded joints of ASME Grade 91 type steel have been collected from Japanese plants, milling companies and institutes, and the long-term creep rupture strength of the material has been evaluated. This evaluation of welded joints of Grade 91 steel is the third one in Japan as similar studies were conducted in 2004 and 2010. The re-evaluation of the creep rupture strength was conducted with emphasis on the long-term creep rupture data obtained since the previous study, with durations of the new data of up to about 60000h. The new long-term data exhibited lower creep strength than that obtained from the master creep life equation for welded joints of Grade 91 steel determined in 2010, then the master creep life equation was again reviewed on the basis of the new data using the same regression method as that used in 2010. Furthermore, the weld strength reduction factors obtained from 100000h creep strength of welded joints and the base metals are given as a function of temperature, where the master creep equations of the base metals are also redetermined in this study.

Author(s):  
Masatsugu Yaguchi ◽  
Takuaki Matsumura ◽  
Katsuaki Hoshino

Creep rupture data of welded joints of ASME Grades 91, 92 and 122 type steels have been collected and long-term creep rupture strength of the materials has been evaluated. Similar study was conducted by the SHC Committee in 2004 and 2005, therefore, the evaluation of the creep rupture strength was conducted with emphasis on the long-term creep rupture data obtained after the previous study, in addition to discussion of the effects of product form, welding procedure and test temperature etc. on the creep strength. Almost the same results were obtained on the welded joint of Grade 92 as the previous study, however, the master creep life equations for the welded joints of Grades 91 and 122 were lower than the previous results, especially in the case of Grade 122. Furthermore, the creep strength reduction factor obtained from 100,000 hours creep strength of welded joints and base metal was given as a function of temperature.


Author(s):  
Kouichi Maruyama ◽  
Nobuaki Sekido ◽  
Kyosuke Yoshimi

Predictions as to 105 hrs creep rupture strength of grade 91 steel have been made recently. The predictions should be verified by some means, since they are based on certain assumptions. A formula for predicting long-term creep rupture lives should correctly describe long-term data points used in its formulation. Otherwise the formula cannot properly predict further longer-term creep rupture lives. On the basis of this consideration, the predictions are examined with long-term creep rupture data of the steel. In the predictions three creep rupture databases were used: data of tube products of grade 91 steel reported in NIMS Creep Data Sheet (NIMS T91 database), data of T91 steel collected in Japan, and data of grade 91 steel collected by an ASME code committee. Short-term creep rupture data points were discarded by the following criteria for minimizing overestimation of the strength: selecting long-term data points with low activation energy (multi-region analysis), selecting data points crept at stresses lower than a half of proof stress (σ0.2/2 criterion), and selecting data points longer than 1000 hrs (cut-off time of 1000 hrs). In the case of NIMS T91 database, a time-temperature parameter (TTP) analysis of a dataset selected by the multi-region analysis can properly describe the long-term data points. However, the TTP analyses of datasets selected by the σ0.2/2 criterion and by the cut-off time of 1000 hrs from the same database overestimate the long-term data points. The different criteria for data selection have more substantial effects on predicted values of the strength of the steel than difference of the databases.


2017 ◽  
Vol 139 (5) ◽  
Author(s):  
K. Maruyama ◽  
N. Sekido ◽  
K. Yoshimi

Predictions as to 105 h creep rupture strength of grade 91 steel have been made recently. The predicted values are examined with long-term creep rupture data of the steel. Three creep rupture databases were used in the predictions: data of tube products of grade 91 steel reported in National Institute for Materials Science (NIMS) Creep Data Sheet (NIMS T91 database), data of T91 steel collected in Japan, and data of grade 91 steel collected by an American Society of Mechanical Engineers (ASME) code committee. Short-term creep rupture data points were discarded by the following criteria for minimizing overestimation of the strength: selecting long-term data points with low activation energy (multiregion analysis), selecting data points crept at stresses lower than a half of proof stress (σ0.2/2 criterion), and selecting data points longer than 1000 h (cutoff time of 1000 h). In the case of NIMS T91 database, a time–temperature parameter (TTP) analysis of a dataset selected by multiregion analysis can properly describe the long-term data points and gives the creep rupture strength of 68 MPa at 600 °C. However, TTP analyses of datasets selected by σ0.2/2 criterion and cutoff time of 1000 h from the same database overestimate the data points and predict the strength over 80 MPa. Datasets selected by the same criterion from the three databases provide similar values of the strength. The different criteria for data selection have more substantial effects on predicted values of the strength of the steel than difference of the databases.


Author(s):  
Masaaki Tabuchi ◽  
Yukio Takahashi

In order to review the allowable creep strength of high Cr ferritic steels, creep rupture data of base metal and welded joints have been collected and long-term creep strength have been analyzed in the SHC committee in Japan since 2004. In the present paper, the creep rupture data of 370 points for welded joint specimens of modified 9Cr-1Mo steel (ASME Grade 91) offered from seven Japanese companies and institutes were analyzed. These data clearly indicated that the creep strength of welded joints was lower than that of base metal due to Type IV fracture in HAZ at or above 600°C. From the activities of this committee, the master curve for life evaluation of welded joints of Gr.91 steel could be represented as follows: LMP==34154+3494(logσ)−2574(logσ)2,C=31.4 The reduction factor of 100,000 hours creep rupture strength of welded joint to base metal was concluded to be 0.75 at 600°C and 0.70 at 650°C for the Gr.91 steel.


Author(s):  
Masatsugu Yaguchi ◽  
Sosuke Nakahashi ◽  
Koji Tamura

A creep strength of welded joint of ASME Grade 91 steel in a region exceeding 100,000 hours was examined in this work. Creep tests were conducted on the steel used at USC plants for long-term, and remaining creep life of the material for operating condition was calculated on a fitting curve using Larson-Miller parameter. Total creep life of the material, which means a creep life at initial state, was presumed to be a summation of the service time at the plants and the remaining creep life. The estimation was conducted for welded joints used at five plants for long-term, and all results lay within 99% confidential band by the creep life evaluation curve of the material proposed by Japanese committee in 2015, while a significant heat-heat variation of creep strength was found even in the region exceeding 100,000 hours. Creep tests on base metals related to each welded joint were also conducted, and the estimation results of the total creep life of the base metals were compared to those of the welded joints. It was suggested that the heat-heat variation of the welded joints eminently depends on the creep life property of the corresponding base metal.


Author(s):  
Kazuhiro Kimura ◽  
Masatsugu Yaguchi

Creep rupture strength of ASME Grades 91, 92, 122 and 23 type steels were evaluated by the SHC committee in 2004 and 2005, and the Assessment Committee on Creep Data of High Chromium Steels in 2010. According to the evaluation of creep rupture strength, allowable stress of the steels was revised and weld strength reduction factor (WSRF) was established. In 2015, the creep rupture data of those steels was collected from materials producers, power plant manufacturers and institutes in Japan and a review of long-term creep rupture strength of the steels was conducted by the Assessment Committee on Creep Data of High Chromium Steels in reference to the previous evaluation. It has been confirmed with the latest dataset that re-evaluation of long-term creep rupture strength is not required for Grades 92, 122 and 23 type steels. On the other hand, lower creep rupture strength compared with the previous evaluation was recognized on the new creep rupture data of Grade 91 steels, therefore, re-evaluation of creep rupture strength was conducted on Grade 91 steels. Creep rupture strength was assessed by means of region splitting analysis method in consideration of 50% of 0.2% offset yield strength, in the same way as the previous study. According to the evaluation of long-term creep strength of the steels, allowable tensile stress was reviewed and proposed revision was concluded.


Author(s):  
Kazuhiro Kimura ◽  
Yukio Takahashi

Creep rupture data of ASME Grades 91, 92 and 122 type steels have been collected and long-term creep rupture strength of the steels has been evaluated. Similar study was conducted by the SHC committee in 2004 and 2005, therefore, the evaluation of long-term creep rupture strength was conducted with emphasis on the long-term creep rupture data obtained after the previous study. Creep rupture strength was analyzed by means of region splitting analysis method in consideration of 50% of 0.2% offset yield strength, in the same way as the previous study. Almost the same results were obtained on base metal of Grade 92 as the previous study, however, evaluated 100,000 hours creep rupture strength of base metal of Grades 91 and 122 were lower than the previous results. For Grades 91 and 122 type steels, moreover, creep rupture strength of the plate steel were lower than those of pipe and forging steels. Tendency to decrease with increase in nickel content was observed on long-term creep rupture strength of tube steel of Grade 91 at 600°C. According to the evaluation of long-term creep strength of the steels, allowable tensile stress was reviewed and proposed revision was concluded.


2020 ◽  
Vol 142 (4) ◽  
Author(s):  
Kazuhiro Kimura ◽  
Masatsugu Yaguchi

Abstract Stress rupture factors and weld strength reduction factors for Grade 91 steel weldments in the codes and literatures have been reviewed. Stress rupture factors for weld metals proposed for code case N-47 in the mid 1980's was defined as a ratio of average rupture strength of the deposited filler metal to the average rupture strength of the base metal. Remarkable drop in creep rupture strength of weldments is significant issue of Grade 91, especially in the low-stress and long-term regime. A premature failure of Grade 91 steel weldments in the long-term, however, is caused by type IV failure which takes place in the fine grain heat affected zone (FG-HAZ), rather than fracture in the deposited weld metal. The stress rupture factor of the Grade 91 steel, therefore, was based on the creep rupture strength of cross weld test specimens. Creep rupture data of Grade 91 steel weldments reported in the publication of ASME STP-PT-077 were integrated with the creep rupture data collected in Japan and used for this study. Time- and temperature-dependent stress rupture factors for Grade 91 steel have been evaluated based on the consolidated database as a ratio of average creep rupture strength of cross weld test specimen to the average creep rupture strength of base metal.


Author(s):  
Takashi Wakai ◽  
Yuji Nagae ◽  
Takashi Onizawa ◽  
Satoshi Obara ◽  
Yang Xu ◽  
...  

This paper describes a proposal of provisional allowable stress for the welded joints made of modified 9Cr-1Mo steel (ASME Gr.91) applicable to the structural design of Japanese Sodium cooled Fast Reactor (JSFR). For the early commercialization of the SFRs, economic competitiveness is one of the most essential requirements. One of the most practical means to reduce the construction costs is to diminish the total amount of structural materials. To meet the requirements, modified 9Cr-1Mo steel has attractive characteristics as a main structural material of SFRs, because the steel has both excellent thermal properties and high temperature strength. Employing the steel to the main pipe material, remarkable compact plant design can be achieved. There is only one elbow in the hot leg pipe of the primary circuit. However, in such a compact piping, it is difficult to keep enough distance between welded joint and high stress portion. In the welded joints of creep strength enhanced ferritic steels including ASME Gr.91 (modified 9Cr-1Mo) steel, creep strength may obviously degrade especially in long-term region. This phenomenon is known as “Type-IV” damage. Though obvious strength degradation has not observed at 550°C yet for the welded joint made of modified 9Cr-1Mo steel, it is proper to suppose strength degradation must take place in very long-term creep. Therefore, taking strength degradation due to “Type-IV” damage into account, the allowable stress applicable to JSFR pipe design was proposed based on creep rupture test data acquired in temperature accelerated conditions. Available creep rupture test data of welded joints made of modified 9Cr-1Mo steel provided by Japanese steel vender were collected. The database was analyzed by region partition method. The creep rupture data were divided into two regions of short-term and long-term and those were individually evaluated by regression analyses with Larson Miller Parameter (LMP). Boundary condition between short-term and long-term was half of 0.2% proof stress of base metal at corresponding temperature. First order equation of logarithm stress was applied. For conservativeness, allowable stress was proposed provisionally considering design factor for each region. Present design of JSFR hot leg pipe of primary circuit was evaluated using the proposed allowable stress. As a result, it was successfully demonstrated that the compact pipe design was assured. For validation of the provisional allowable stress, a series of long-term creep tests were started. In future, the provisional allowable stress will be properly reexamined when longer creep rupture data are obtained. In addition, some techniques to improve the performance of welded joints were surveyed and introduced.


Author(s):  
Kazuhiro Kimura ◽  
Kota Sawada ◽  
Masakazu Fujitsuka ◽  
Hideaki Kushima

Creep test of ASME Grade 23 steel has been conducted at 625 and 650°C in helium gas atmosphere. Long-term creep strength of the steel in helium gas was compared with that in air and the influence of oxidation on long-term creep strength was investigated. Creep rupture strength drop was observed in the long-term at 625 and 650°C in air, and the same creep rupture strength drop was observed also in helium gas at 625°C. On the other hand, although creep rupture strength drop was observed in the long-term at 650°C in helium gas, creep rupture life in the long-term in helium gas was slightly longer than that in air at 650°C. Creep rupture life in the long-term at 650°C in air is reduced by not only degradation due to microstructural change, but also marked oxidation, however, that at 625°C is considered to be shortened mainly by a degradation caused by microstructural change. Long-term creep strength of ASME Grade 23 steel at 600°C and above should be reevaluated in consideration of strength drop due to microstructural change.


Sign in / Sign up

Export Citation Format

Share Document