Determination of Tensile Elastic Modulus in High Density Polyethylene Piping at Seismic Strain Rates

Author(s):  
Douglas Munson ◽  
Timothy M. Adams ◽  
Shawn Nickholds

For corroded piping in low temperature systems, such as service water systems in nuclear power plants, replacement of carbon steel pipe with High Density Polyethylene pipe is a cost-effective solution. Polyethylene pipe can be installed at much lower labor costs than carbon steel pipe and High Density Polyethylene pipe has a much greater resistance to corrosion. Data was developed by the three testing tasks for use in the seismic design of above ground High Density Polyethylene Piping systems. This paper presents the results of testing to determine the relationship between tensile elastic modulus and strain rates commensurate with seismic loading. This is accomplished by first establishing a seismic strain rate for High Density Polyethlene using detailed finite element analysis. The results of this analysis are used to establish a test matrix tensile testing. Next, tensile tests are conducted using standard ASTM D-638 Type III tensile specimens. The tensile testing is conducted at three pull speeds to establish a basic relationship between tensile elastic modulus and strain rates. This relationship is then used to calculate the modulus at the strain rates expected under seismic loading. This paper presents the results of this testing and the suggested tensile modulus for use in seismic analysis.

Author(s):  
Timothy M. Adams ◽  
Jie Wen ◽  
Shawn Nickholds ◽  
Douglas Munson

For corroded piping in low temperature systems replacement of buried carbon steel pipe with high density polyethylene (HDPE) pipe is a cost-effective solution. The ASME Boiler and Pressure Vessel Code, Section III, Division 1, Code Case N755-1 currently permits the use of HDPE in buried Safety Class 3 piping systems. This paper presents the results of tensile testing of PE 4710 cell classification 445574C pipe compliant with the requirements of Code Case N755-1. This information was developed to support and provide a strong technical basis for tensile properties of HDPE pipe. The data may also be useful for applications of HDPE pipe in commercial electric power generation facilities and chemical, process, and waste water plants via its possible use in the B31 series piping codes. The paper provides values for yield stress, yield strain, ultimate strain, and elastic modulus. The standard tensile tests were conducted consistent with the requirements of ASTM D638-10. Specimens were cut in the axial direction from cell composition PE 4710 cell classification 445574C HDPE piping spools. In addition, the results are compared to previous tensile testing conducted on the PE 3608 cell classification 345464C and PE 4710 cell classification 445474C HDPE materials.


Author(s):  
Douglas Munson ◽  
Timothy M. Adams ◽  
Siegrid Hall

For corroded piping in low temperature systems, such as service water systems in nuclear power plants, replacement of carbon steel pipe with High Density Polyethylene pipe is a cost-effective solution. Polyethylene pipe can be installed at much lower labor costs than carbon steel pipe and High Density Polyethylene pipe has a much greater resistance to corrosion. This paper presents the results of Electric Power Research Institute sponsored testing to determine material damping values for High Density Polyethylene pipe material. This was determined by experimental methods using the log decrement approach. Cantilevered beam samples were deflected, released and the resulting free vibration response was recorded. The possible relationship of the damping value to the natural frequency and the stress level of the test samples is also studied. The results of the testing are presented along with suggested damping values to be used in the seismic analysis of High Density Polyethylene piping.


Author(s):  
Timothy M. Adams ◽  
Siegrid Hall ◽  
Rudolph J. Scavuzzo ◽  
Douglas Munson ◽  
Jeffrey W. Andrasik ◽  
...  

Degradation of service water systems is a major issue facing nuclear power plant owners, and many plants will require repair or replacement of existing carbon steel piping components. High Density Polyethylene pipe has been used in non-safety service water systems for over nine years and found to perform well, but it is not currently permitted in the ASME Section III Boiler and Pressure Vessel Code, Division 1 for use in nuclear safety-related systems. To assist in the implementation of High Density Polyethylene pipe in the ASME Boiler and Pressure Vessel Code, Section III, Division 1 for Safety Class 3 applications, EPRI initiated a High Density Polyethylene pipe and pipe material testing program. This test program includes tensile testing and fatigue testing of High Density Polyethylene piping and piping components and the development of slow crack growth data. To determine the material and engineering properties needed, extensive tensile testing of specimens cut from High Density Polyethylene pipe was conducted. The initial tensile test program was conducted on PE 3408 with cell classification 345464C and a second, not yet finalized, phase was added to test PE 4710 with cell classification 445474C. The data developed during the testing were used to establish ultimate strain, elastic moduli, yield stress and yield strain values for both new and aged materials. Because extruded HDPE properties vary in the hoop and axial directions and the properties are highly affected by temperature, specimens were cut in both the hoop and axial directions and were tested at temperatures ranging from 50° F to 180° F. This paper provides a description and overview of the PE 3408 cell class 345464C test program. In addition, an overview and summary of the test results for the PE 3408 cell class 345464C are provided.


2021 ◽  
pp. 128580
Author(s):  
Ioan-Robert Istrate ◽  
Rafael Juan ◽  
Mario Martin-Gamboa ◽  
Carlos Domínguez ◽  
Rafael A. García-Muñoz ◽  
...  

Author(s):  
Timothy M. Adams ◽  
Shawn Nickholds ◽  
Douglas Munson ◽  
Jeffery Andrasik

For corroded piping in low temperature systems, such as service water systems in nuclear power plants, replacement of carbon steel piping with high density polyethylene (HDPE) is a cost-effective solution. Polyethylene pipe can be installed at much lower labor costs that carbon steel pipe and HDPE pipe has a much greater resistance to corrosion. The ASME Boiler and Pressure Vessel Code, Section III, Division 1 currently permits the use of non-metallic piping in buried safety Class 3 piping systems. Additionally, HDPE pipe has been successfully used in non-safety-related systems in nuclear power facilities and is commonly used in other industries such as water mains and natural gas pipelines. This report presents the results of updated fatigue testing of PE 4710 cell classification 445574C pipe compliant with the specific Code requirements. This information was developed to support and provide a strong technical basis for material properties of HDPE pipe for use in ASME Boiler and Pressure Vessel Code, Section III New Construction and Section XI repair or replacement activities. The data may also be useful for applications of HDPE pipe in commercial electric power generation facilities and chemical, process and waste water plants via its possible use in the B31 series piping codes. The report provides fatigue data in the form of Code S-N curves for fusion butt joints in PE 4710 cell classification 445574C HDPE pipe.


Sign in / Sign up

Export Citation Format

Share Document