Comparison of the Limit Loads Between Defected Pressure Pipes With an Internal Pit and an External Pit at High Temperature

Author(s):  
Changyu Zhou ◽  
Bo Wang ◽  
Zhigang Sun ◽  
Jilin Xue ◽  
Xiaohua He

High temperature pressure pipes are widely used in power stations, nuclear power plants, and petroleum refinery, which always bear combined effects of high temperature, high pressure, and corrosive media, so the local pits are the most common volume defects in pressure pipe. Due to various reasons, the defects usually appear on the internal or external wall of pipe. In this paper, the dimensions of a defect were characterized as three dimensionless factors: relative depth, relative gradient and relative length. The main objects of study were the pipe with an internal pit and pipe with an external pit. Orthogonal array testing of three factors at four different levels was applied to analyze the sequence of the influence of three parameters. In present study, when the maximum principal strain nearby the location of the defects reaches 2%, the corresponding load is defined as the limit load, which is classified as two kinds of load type: limit pressure and limit bending moment. According to this strain criterion and isochronous stress strain data of P91 steel, the limit load of high temperature pipe with a local pit was determined by using ABAQUS. And in the same load condition of the pipe with the same dimensionless factors, the limit load of the internal defected pipe was compared with that of the external defected pipe. The results of this study can provide a reference for safety assessment and structural integrity analysis of high temperature creep pressure pipe with pit defects.

Author(s):  
Bo Wang ◽  
Changyu Zhou ◽  
Xiaohua He ◽  
Jilin Xue

Local pit is the common volume defect in high temperature pressure pipe which is widely used in the fields of electric plant, nuclear power station, petrochemical plant and so on. In this paper finite element analysis code ABAQUS was used to simulate limit load of high temperature pressure pipe with an external pit defect which is in service for 105 hours. Four-point bending loading model was applied to calculate the limit load of the pipe. There are three dimensionless factors: relative depth, relative gradient and relative length which characterized the shape of an external pit defect. Orthogonal test of three factors at four different levels was carried out to analyze the sequence of the influence of these three parameters. In present paper when the maximum principal strain reaches 2%, the corresponding load is selected as the limit load. According to this strain criterion and isochronous stress strain data of P91 steel, limit load of high temperature pressure pipe with an external pit was determined by using ABAQUS. Firstly, isochronous stress strain data was generated and was inputted into ABAQUS as equivalent elastic-plastic constitutive relation. Then, sustained load versus cumulative strain curves at high temperature during service was obtained after the simulation. At last, limit loads of high temperature pipe during service time was determined based on 2% total strain criterion. In order to obtain the safety assessment curve of high temperature pipe, five types of limit loads for pressure pipe with an external pit were needed: ultimate limit bending moment, limit internal pressure, limit bending moments at the pressure of 0.25PL,0.5PL and 0.75PL individually. 16 sets of data formed 16 groups of curves which expressed the relationship between the ratio of limit pressure and the ratio of limit bending moment for defective pipe and non-defective pipe. Based on the calculation results of limit load for pipe with 16 kinds of defects, a set of limit load formulae were established through multiple nonlinear regression of relative depth, relative gradient and relative length. So the equations of limit load and safety assessment for pressure pipe with an external pit under combined loading of pressure and bending moment were obtained. The results could provide a reference for safety assessment of high temperature creep pressure pipe with local pit defect.


Author(s):  
Alton Reich ◽  
Victor Newman ◽  
Roberto Di Salvo ◽  
John Charest

Cured-in-place piping (CIPP) is used to repair existing pressure pipe that has compromised structural integrity and is no longer capable of holding operating pressure without leaking. It is often used to repair buried piping where digging the piping up to replace it would be inconvenient and/or cost prohibitive. CIPP is routinely used to repair water and sewer lines, and an ASTM specification exists to guide the design of the pipe repair for these applications. CIPP can also be used as a repair technique for piping at nuclear power plants; however, such use must be approved on a case-by-case basis. This paper discusses some of the design challenges associated with designing the CIPP for a nuclear plant application. It presents an overview of the analytical approach and the results.


2009 ◽  
Vol 4 (1) ◽  
pp. 17-22
Author(s):  
T. H. Hyde ◽  
W. Sun ◽  
A. A. Becker ◽  
S. B. Leen ◽  
P. H. Shipway ◽  
...  

Author(s):  
Sun-Hye Kim ◽  
Yoon-Suk Chang ◽  
Young-Jin Kim

Lots of investigations on failures of wall thinned piping have been carried out since the accident of Surry unit 2 in USA. From these preceding efforts, flow accelerated corrosion (FAC) which is a kind of wall thinning phenomenon is revealed main factor of failure of pipes in nuclear power plants. However, there are a few researches which directly take into account of flow characteristics and geometric changes for stress assessment of FAC-caused wall thinned piping. In this paper, structural integrity assessment employing a fluid-structure interaction (FSI) analysis scheme is performed on pipes representing secondary piping system of PWR which consists of straight pipes and elbows of various bend angles. Prior to the assessment, CFD analyses are conducted to predict plausible wall thinning location by considering flow and geometric parameters such as bend angle and radius of elbow. Then, for typical pipe geometry, detailed limit load analyses are performed to calculate maximum stress caused by turbulence and velocity of flow near the wall thinned part. Through these kinds of detailed parametric analyses, effects of FSI were observed, which should be considered for assessment of FAC-caused wall thinned piping.


Author(s):  
Yinsheng Li ◽  
Kunio Hasegawa ◽  
Michiya Sakai ◽  
Shinichi Matsuura ◽  
Naoki Miura

When a crack is detected in a nuclear piping system during in-service inspections, the failure estimation method provided in codes such as the ASME Boiler and Pressure Vessel Code Section XI or JSME Rules on Fitness-for-Service for Nuclear Power Plants can be applied to evaluate the structural integrity of the cracked pipe. In the current codes, the failure estimation method for circumferentially cracked pipes includes bending moment and axial force due to pressure. Torsion moment is not considered. The Working Group on Pipe Flaw Evaluation for the ASME Boiler and Pressure Vessel Code Section XI is developing guidance for combining torsion load within the existing solutions provided in Appendix C for bending and pressure loadings on a pipe. A failure estimation method for circumferentially cracked pipes subjected to general loading conditions including bending moment, internal pressure and torsion moment with general magnitude has been proposed based on analytical investigations on the limit load for cracked pipes. In this study, experimental investigation was conducted to confirm the applicability of the proposed failure estimation method. Experiments were carried out on 8-inch diameter Schedule 80 stainless steel pipes containing a circumferential surface crack. Based on the experimental results, the proposed failure estimation method was confirmed to be applicable to cracked pipes subjected to combined bending and torsion moments.


Author(s):  
Kenta Shimomura ◽  
Takashi Onizawa ◽  
Shoichi Kato ◽  
Masanori Ando ◽  
Takashi Wakai

This paper describes the formulation of material characteristics of austenitic stainless steels at extremely high temperature which meets in some kinds of severe accidents of nuclear power plants. After the severe accident in Fukushima dai-ichi nuclear power plants, it has been supposed to be very important not only to prevent the occurrence of abnormal conditions, i.e. from the first to the third layer safety, but also to prevent the expansion of the accident conditions, i.e. the fourth layer safety[1] [2]. In order to evaluate the structural integrity under the severe accident condition, material characteristics which can be used in the numerical analyses, such as finite element analysis, were required [3] [4]. However, there were no material characteristics applicable to the structural integrity assessment at extremely high temperature. Therefore, a series of tensile and creep tests was performed for austenitic stainless at extremely high temperature which meets in some kinds of severe accidents of nuclear power plants, namely up to 1000 °C. Based on the acquired data from the tests, monotonic stress-strain equation and creep rupture equation applicable to the structural analysis at extremely high temperature, up to 1000 °C were formulated. As a result, these formulae make it possible to conduct the structural integrity assessment using numerical analysis techniques, such as finite element method.


2014 ◽  
Vol 136 (3) ◽  
Author(s):  
Naoki Miura ◽  
Katsuaki Hoshino ◽  
Yinsheng Li ◽  
Kunio Hasegawa

When a crack-like-flaw is detected in piping during in-service inspection, the limit load criterion given in the codes such as JSME Rules on Fitness-for-Service for Nuclear Power Plants or ASME Boiler and Pressure Vessel Code Section XI can be applied to evaluate the structural integrity of the piping. However, in-service piping is generally subjected to combined tensile, bending, and torsional loading, and a methodology to evaluate the limit moment for torsion has not yet been established because of inadequate experimental validation. In this study, fracture tests were conducted for circumferentially cracked cylinders subjected to torsional moment. The experimental maximum moments were compared with the limit moments, which were evaluated on the basis of the net-section-collapse criterion for torsional moment. The maximum moments can be conservatively predicted by the net-section-collapse criterion.


Author(s):  
Naoki Miura ◽  
Katsuaki Hoshino ◽  
Yinsheng Li ◽  
Kunio Hasegawa

When a flaw is detected in piping during in-service inspection, the limit load criterion given in the codes such as JSME Rules on Fitness-for-Service for Nuclear Power Plants or ASME Boiler and Pressure Vessel Code Section XI can be applied to evaluate the structural integrity of the piping. Actual piping is generally subjected to combined tensile, bending, and torsional loading, however, a methodology to evaluate limit moment for torsion is not established due to the inadequacy of experimental validation. In this study, fracture tests for circumferentially cracked cylinders subjected to torsional moment were conducted. Experimental maximum moments were compared with the limit moments, which were evaluated based on the concept of the net-section-collapse criterion for torsional moment. The maximum moments could be conservatively predicted by the net-section-collapse criterion. In addition, innovative tests subjected to torsional moments were conducted using a pair of Charpy V-notch specimens and a conventional test machine. The applicability of the net-section-collapse criterion for torsional moment was experimentally validated. The adequacy of the replacement of cracks with machined notches for ductile materials under torsional loading was also investigated through the comparison of the fracture behavior obtained from notched and precracked Charpy specimens. The developed method could be an alternative test method for torsional moment.


Sign in / Sign up

Export Citation Format

Share Document