Guideline on Probabilistic Fracture Mechanics Analysis for Japanese Reactor Pressure Vessels

Author(s):  
Jinya Katsuyama ◽  
Kazuya Osakabe ◽  
Shumpei Uno ◽  
Yinsheng Li ◽  
Shinobu Yoshimura

In Japan, to prevent nil-ductile fracture of reactor pressure vessels (RPVs) due to neutron irradiation embrittlement, deterministic fracture mechanics evaluation in accordance with the standards developed by the Japan Electric Association is performed for assessing the structural integrity of RPVs under pressurized thermal shock (PTS) events considering neutron irradiation embrittlement. In recent years, a structural integrity assessment methodology based on probabilistic fracture mechanics (PFM) has been introduced into the regulations in the United States and a few European countries. PFM is a rational methodology for evaluating the failure frequency of important pressure boundary components by considering the statistical distributions of various influence factors related to ageing due to the long-term operation. At Japan Atomic Energy Agency (JAEA), a PFM analysis code called PASCAL has been developed to evaluate the failure frequency of RPVs considering neutron irradiation embrittlement and PTS events. In addition, JAEA has developed a guideline for the PFM based structural integrity assessment of RPVs to promote the applicability of PFM in Japan and achieve the objective that an engineer/analyst who familiar with the fracture mechanics to perform PFM analyses and evaluate through-wall cracking frequency (TWCF) of RPVs easily. The guideline consists of a main body (general requirements), explanation (guidance), and several supplements. The technical basis for PFM analysis is also provided, and the new information and better fracture mechanics models are included in the guideline. In this paper, an overview of the guideline and some typical analysis results obtained based on the guideline and the Japanese database related to PTS evaluation are presented.

2020 ◽  
Vol 142 (2) ◽  
Author(s):  
Jinya Katsuyama ◽  
Kazuya Osakabe ◽  
Shumpei Uno ◽  
Yinsheng Li ◽  
Shinobu Yoshimura

Abstract In Japan, to prevent nil-ductile fracture of reactor pressure vessels (RPVs) due to neutron irradiation embrittlement, deterministic fracture mechanics evaluation in accordance with the codes provided by the Japan Electric Association is performed for assessing the structural integrity of RPVs under pressurized thermal shock (PTS) events considering neutron irradiation embrittlement. In recent years, a structural integrity assessment methodology based on probabilistic fracture mechanics (PFM) has been introduced into the regulations in the United States and a few European countries. PFM is a rational methodology for evaluating the failure frequency of important pressure boundary components by considering the probabilistic distributions of various influence factors related to aged degradation due to the long-term operation. In Japan Atomic Energy Agency (JAEA), a PFM analysis code called PASCAL has been developed to evaluate the failure frequency of RPVs considering neutron irradiation embrittlement and PTS events. In addition, we have developed a guideline for structural integrity assessment of RPVs based on PFM to improve the applicability of PFM in Japan and enable persons who have knowledge on fracture mechanics to perform PFM analyses and evaluate through-wall cracking frequency (TWCF) of RPVs easily. The guideline consists of a main body, explanation, and several supplements. The technical basis for PFM analysis is provided, and the latest knowledge is included in the guideline. In this paper, an overview of the guideline and some typical analysis results obtained based on the guideline and the Japanese database related to PTS evaluation are presented.


Author(s):  
Kai Lu ◽  
Koichi Masaki ◽  
Jinya Katsuyama ◽  
Yinsheng Li

In Japan, a probabilistic fracture mechanics (PFM) analysis code PASCAL has been developed by Japan Atomic Energy Agency for structural integrity assessment of reactor pressure vessels (RPVs). The most recent release is PASCAL Version 4 (hereafter, PSACAL4) which can be used to evaluate the failure frequency of RPVs considering neutron irradiation embrittlement and pressurized thermal shock events. For the integrity assessment of RPVs, development of crack evaluation models is important. In this study, finite element analyses are performed firstly to verify the stress intensity factor calculations of cracks in PASCAL4. In addition, the applicability of the crack evaluation models in PASCAL4 such as the location of embedded cracks, crack shape and depth of surface cracks, and the increment of crack propagation is investigated. Based on sensitivity analyses of crack evaluation models for Japanese RPVs using PASCAL4, the effects of these evaluation models on failure frequency are clarified. From the analysis results, crack evaluation models recommended to the failure frequency evaluation for a Japanese model RPV are discussed.


Author(s):  
Kai Lu ◽  
Jinya Katsuyama ◽  
Yinsheng Li ◽  
Shinobu Yoshimura

Abstract Probabilistic fracture mechanics (PFM) methodology, which represents the influence parameters in their inherent probabilistic distributions, is deemed to be promising in the structural integrity assessment of pressure-boundary components in nuclear power plants. To strengthen the applicability of PFM methodology in Japan, Japan Atomic Energy Agency has developed a PFM analysis code called PASCAL4 (PFM Analysis of Structural Components in Aging LWRs, Version 4) which can be used to evaluate the failure frequency of reactor pressure vessels (RPVs) considering neutron irradiation embrittlement and pressurized thermal shock events. PASCAL4 is expected to make a significant contribution to the probabilistic integrity assessment of Japanese RPVs. In this study, PFM analyses are performed for a Japanese model RPV using PASCAL4, and the effects of non-destructive examination and neutron fluence mitigation on failure frequency of RPV are quantitatively evaluated. From the analysis results, it is concluded that PASCAL4 is useful for the structural integrity assessment of RPVs and can enhance the applicability of PFM methodology.


Author(s):  
Yinsheng Li ◽  
Shumpei Uno ◽  
Koichi Masaki ◽  
Jinya Katsuyama ◽  
Terry Dickson ◽  
...  

A probabilistic fracture mechanics (PFM) analysis code PASCAL has been developed by Japan Atomic Energy Agency based on Japanese methods and data to evaluate failure probabilities and failure frequencies of Japanese reactor pressure vessels (RPVs) considering pressurized thermal shock (PTS) events and neutron irradiation embrittlement. To verify PASCAL, we have been performing benchmark analyses by using a PFM code FAVOR which has been developed in the United States and utilized in nuclear regulation. Based on two-year activities, the applicability of PASCAL in failure probability and failure frequency evaluation of Japanese RPVs was confirmed with great confidence. The analysis conditions, approaches and results are given in this paper.


2019 ◽  
Vol 142 (2) ◽  
Author(s):  
Kai Lu ◽  
Jinya Katsuyama ◽  
Yinsheng Li

Abstract In Japan, a probabilistic fracture mechanics (PFM) analysis code PASCAL was developed for structural integrity assessment of reactor pressure vessels (RPVs) considering neutron irradiation embrittlement and pressurized thermal shock (PTS) events. By reflecting the latest knowledge and findings, the evaluation functions are continuously improved and have been incorporated into PASCAL4 which is the most recent version of the PASCAL code. In this paper, the improvements made in PASCAL4 are explained in detail, such as the evaluation model of warm prestressing (WPS) effect, evaluation function of confidence levels for PFM analysis results by considering the epistemic and aleatory uncertainties in probabilistic variables, the recent stress intensity factor (KI) solutions, and improved methods for KI calculations when considering complicated stress distributions. Moreover, using PASCAL4, PFM analysis examples considering these improvements are presented.


2021 ◽  
Vol 143 (4) ◽  
Author(s):  
Yinsheng Li ◽  
Genshichiro Katsumata ◽  
Koichi Masaki ◽  
Shotaro Hayashi ◽  
Yu Itabashi ◽  
...  

Abstract Nowadays, it has been recognized that probabilistic fracture mechanics (PFM) is a promising methodology in structural integrity assessments of aged pressure boundary components of nuclear power plants, because it can rationally represent the influencing parameters in their inherent probabilistic distributions without over conservativeness. A PFM analysis code PFM analysis of structural components in aging light water reactor (PASCAL) has been developed by the Japan Atomic Energy Agency to evaluate the through-wall cracking frequencies of domestic reactor pressure vessels (RPVs) considering neutron irradiation embrittlement and pressurized thermal shock (PTS) transients. In addition, efforts have been made to strengthen the applicability of PASCAL to structural integrity assessments of domestic RPVs against nonductile fracture. A series of activities has been performed to verify the applicability of PASCAL. As a part of the verification activities, a working group was established with seven organizations from industry, universities, and institutes voluntarily participating as members. Through one-year activities, the applicability of PASCAL for structural integrity assessments of domestic RPVs was confirmed with great confidence. This paper presents the details of the verification activities of the working group, including the verification plan, approaches, and results.


Author(s):  
F. A. Simonen ◽  
T. L. Dickson

This paper presents an improved model for postulating fabrication flaws in reactor pressure vessels (RPVs) and for the treatment of measured flaw data by probabilistic fracture mechanics (PFM) codes that are used for structural integrity evaluations. The model used to develop the current pressurized thermal shock (PTS) regulations conservatively postulated that all fabrication flaws were inner-surface breaking flaws. To reduce conservatisms and uncertainties in flaw-related inputs, the United States Nuclear Regulatory Commission (USNRC) has supported research at Pacific Northwest National Laboratory (PNNL) that has resulted in data on fabrication flaws from non-destructive and destructive examinations of actual RPV material. Statistical distributions have been developed to characterize the number and sizes of flaws in the various material regions of a vessel. The regions include the main seam welds, repair welds, base metal of plates and forgings, and the cladding that is applied to the inner surface of the vessel. Flaws are also characterized as being located within the interior of these regions or along the weld fusion lines that join the regions. Flaws are taken that occur at random locations relative to the embrittled inner region of the vessel. The probabilistic fracture mechanics model associates each of the simulated flaw types with the fracture properties of the region being addressed.


Author(s):  
Kai Lu ◽  
Koichi Masaki ◽  
Jinya Katsuyama ◽  
Yinsheng Li ◽  
Shumpei Uno

In Japan, Japan Atomic Energy Agency has developed a PFM analysis code PASCAL (PFM Analysis of Structural Components in Aging LWRs) for structural integrity assessment of Japanese reactor pressure vessels (RPVs) considering neutron irradiation embrittlement and pressurized thermal shock transients. By reflecting the latest knowledge and findings, the PASCAL code has been continuously improved. In this paper, the development of PASCAL Version 4 (hereafter, PASCAL4) is described. Several analysis functions incorporated into PASCAL4 for evaluating the failure frequency of RPVs are introduced, for example, the evaluation function of confidence level of failure frequency considering epistemic and aleatory uncertainties in probabilistic variables, the recent stress intensity factor (KI) solutions and KI calculation methods considering complicated stress distributions, and the recent Japanese irradiation embrittlement prediction method. Finally, using PASCAL4, a PFM analysis example for a Japanese model RPV is presented.


2020 ◽  
Vol 143 (2) ◽  
Author(s):  
Kai Lu ◽  
Jinya Katsuyama ◽  
Yinsheng Li ◽  
Shinobu Yoshimura

Abstract Probabilistic fracture mechanics (PFM) is considered to be a promising methodology in structural integrity assessments of pressure-boundary components in nuclear power plants since it can rationally represent the inherent probabilistic distributions for influence parameters without over-conservativeness. To strengthen the applicability of PFM methodology in Japan, Japan Atomic Energy Agency has developed a PFM analysis code PASCAL4 which enables the failure frequency evaluation of reactor pressure vessels (RPVs) considering neutron irradiation embrittlement and thermal transients. PASCAL4 is expected to make a significant contribution to the probabilistic integrity assessment of Japanese RPVs. In this study, PFM analysis for a Japanese model RPV in a pressurized water reactor (PWR) was conducted using PASCAL4, and the effects of nondestructive examination (NDE) and neutron flux reduction on failure frequencies of the RPV were quantitatively evaluated. From the analysis results, it is concluded that PASCAL4 is useful for probabilistic integrity assessments of embrittled RPVs and can enhance the applicability of PFM methodology.


Author(s):  
Yinsheng Li ◽  
Shumpei Uno ◽  
Jinya Katsuyama ◽  
Terry Dickson ◽  
Mark Kirk

A probabilistic fracture mechanics (PFM) analysis code called PASCAL has been developed by the Japan Atomic Energy Agency to evaluate failure frequencies of Japanese reactor pressure vessels (RPVs) during pressurized thermal shock (PTS) events based on Japanese data and Japanese methods published for or provided in Japanese codes and standards. To verify this code, benchmark analyses were carried out using the FAVOR code, which was developed in the United States and has been utilized in nuclear regulation. The results of these analyses confirmed with great confidence the applicability of PASCAL to failure probability and frequency evaluation of Japanese RPVs. An outline of PASCAL, the benchmark analysis conditions and analysis results are reported in this paper.


Sign in / Sign up

Export Citation Format

Share Document