Verification of Probabilistic Fracture Mechanics Analysis Code PASCAL Through Benchmark Analyses With FAVOR

Author(s):  
Yinsheng Li ◽  
Shumpei Uno ◽  
Jinya Katsuyama ◽  
Terry Dickson ◽  
Mark Kirk

A probabilistic fracture mechanics (PFM) analysis code called PASCAL has been developed by the Japan Atomic Energy Agency to evaluate failure frequencies of Japanese reactor pressure vessels (RPVs) during pressurized thermal shock (PTS) events based on Japanese data and Japanese methods published for or provided in Japanese codes and standards. To verify this code, benchmark analyses were carried out using the FAVOR code, which was developed in the United States and has been utilized in nuclear regulation. The results of these analyses confirmed with great confidence the applicability of PASCAL to failure probability and frequency evaluation of Japanese RPVs. An outline of PASCAL, the benchmark analysis conditions and analysis results are reported in this paper.

Author(s):  
Yinsheng Li ◽  
Shumpei Uno ◽  
Koichi Masaki ◽  
Jinya Katsuyama ◽  
Terry Dickson ◽  
...  

A probabilistic fracture mechanics (PFM) analysis code PASCAL has been developed by Japan Atomic Energy Agency based on Japanese methods and data to evaluate failure probabilities and failure frequencies of Japanese reactor pressure vessels (RPVs) considering pressurized thermal shock (PTS) events and neutron irradiation embrittlement. To verify PASCAL, we have been performing benchmark analyses by using a PFM code FAVOR which has been developed in the United States and utilized in nuclear regulation. Based on two-year activities, the applicability of PASCAL in failure probability and failure frequency evaluation of Japanese RPVs was confirmed with great confidence. The analysis conditions, approaches and results are given in this paper.


2021 ◽  
Vol 143 (4) ◽  
Author(s):  
Yinsheng Li ◽  
Genshichiro Katsumata ◽  
Koichi Masaki ◽  
Shotaro Hayashi ◽  
Yu Itabashi ◽  
...  

Abstract Nowadays, it has been recognized that probabilistic fracture mechanics (PFM) is a promising methodology in structural integrity assessments of aged pressure boundary components of nuclear power plants, because it can rationally represent the influencing parameters in their inherent probabilistic distributions without over conservativeness. A PFM analysis code PFM analysis of structural components in aging light water reactor (PASCAL) has been developed by the Japan Atomic Energy Agency to evaluate the through-wall cracking frequencies of domestic reactor pressure vessels (RPVs) considering neutron irradiation embrittlement and pressurized thermal shock (PTS) transients. In addition, efforts have been made to strengthen the applicability of PASCAL to structural integrity assessments of domestic RPVs against nonductile fracture. A series of activities has been performed to verify the applicability of PASCAL. As a part of the verification activities, a working group was established with seven organizations from industry, universities, and institutes voluntarily participating as members. Through one-year activities, the applicability of PASCAL for structural integrity assessments of domestic RPVs was confirmed with great confidence. This paper presents the details of the verification activities of the working group, including the verification plan, approaches, and results.


2010 ◽  
Vol 47 (12) ◽  
pp. 1131-1139 ◽  
Author(s):  
Myung Jo JHUNG ◽  
Seok Hun KIM ◽  
Young Hwan CHOI ◽  
Yoon Suk CHANG ◽  
Xiangyuan XU ◽  
...  

Author(s):  
F. A. Simonen ◽  
T. L. Dickson

This paper presents an improved model for postulating fabrication flaws in reactor pressure vessels (RPVs) and for the treatment of measured flaw data by probabilistic fracture mechanics (PFM) codes that are used for structural integrity evaluations. The model used to develop the current pressurized thermal shock (PTS) regulations conservatively postulated that all fabrication flaws were inner-surface breaking flaws. To reduce conservatisms and uncertainties in flaw-related inputs, the United States Nuclear Regulatory Commission (USNRC) has supported research at Pacific Northwest National Laboratory (PNNL) that has resulted in data on fabrication flaws from non-destructive and destructive examinations of actual RPV material. Statistical distributions have been developed to characterize the number and sizes of flaws in the various material regions of a vessel. The regions include the main seam welds, repair welds, base metal of plates and forgings, and the cladding that is applied to the inner surface of the vessel. Flaws are also characterized as being located within the interior of these regions or along the weld fusion lines that join the regions. Flaws are taken that occur at random locations relative to the embrittled inner region of the vessel. The probabilistic fracture mechanics model associates each of the simulated flaw types with the fracture properties of the region being addressed.


Author(s):  
Jinya Katsuyama ◽  
Kazuya Osakabe ◽  
Shumpei Uno ◽  
Yinsheng Li ◽  
Shinobu Yoshimura

In Japan, to prevent nil-ductile fracture of reactor pressure vessels (RPVs) due to neutron irradiation embrittlement, deterministic fracture mechanics evaluation in accordance with the standards developed by the Japan Electric Association is performed for assessing the structural integrity of RPVs under pressurized thermal shock (PTS) events considering neutron irradiation embrittlement. In recent years, a structural integrity assessment methodology based on probabilistic fracture mechanics (PFM) has been introduced into the regulations in the United States and a few European countries. PFM is a rational methodology for evaluating the failure frequency of important pressure boundary components by considering the statistical distributions of various influence factors related to ageing due to the long-term operation. At Japan Atomic Energy Agency (JAEA), a PFM analysis code called PASCAL has been developed to evaluate the failure frequency of RPVs considering neutron irradiation embrittlement and PTS events. In addition, JAEA has developed a guideline for the PFM based structural integrity assessment of RPVs to promote the applicability of PFM in Japan and achieve the objective that an engineer/analyst who familiar with the fracture mechanics to perform PFM analyses and evaluate through-wall cracking frequency (TWCF) of RPVs easily. The guideline consists of a main body (general requirements), explanation (guidance), and several supplements. The technical basis for PFM analysis is also provided, and the new information and better fracture mechanics models are included in the guideline. In this paper, an overview of the guideline and some typical analysis results obtained based on the guideline and the Japanese database related to PTS evaluation are presented.


2020 ◽  
Vol 142 (2) ◽  
Author(s):  
Jinya Katsuyama ◽  
Kazuya Osakabe ◽  
Shumpei Uno ◽  
Yinsheng Li ◽  
Shinobu Yoshimura

Abstract In Japan, to prevent nil-ductile fracture of reactor pressure vessels (RPVs) due to neutron irradiation embrittlement, deterministic fracture mechanics evaluation in accordance with the codes provided by the Japan Electric Association is performed for assessing the structural integrity of RPVs under pressurized thermal shock (PTS) events considering neutron irradiation embrittlement. In recent years, a structural integrity assessment methodology based on probabilistic fracture mechanics (PFM) has been introduced into the regulations in the United States and a few European countries. PFM is a rational methodology for evaluating the failure frequency of important pressure boundary components by considering the probabilistic distributions of various influence factors related to aged degradation due to the long-term operation. In Japan Atomic Energy Agency (JAEA), a PFM analysis code called PASCAL has been developed to evaluate the failure frequency of RPVs considering neutron irradiation embrittlement and PTS events. In addition, we have developed a guideline for structural integrity assessment of RPVs based on PFM to improve the applicability of PFM in Japan and enable persons who have knowledge on fracture mechanics to perform PFM analyses and evaluate through-wall cracking frequency (TWCF) of RPVs easily. The guideline consists of a main body, explanation, and several supplements. The technical basis for PFM analysis is provided, and the latest knowledge is included in the guideline. In this paper, an overview of the guideline and some typical analysis results obtained based on the guideline and the Japanese database related to PTS evaluation are presented.


Author(s):  
Kai Lu ◽  
Jinya Katsuyama ◽  
Yinsheng Li ◽  
Shinobu Yoshimura

Abstract Probabilistic fracture mechanics (PFM) methodology, which represents the influence parameters in their inherent probabilistic distributions, is deemed to be promising in the structural integrity assessment of pressure-boundary components in nuclear power plants. To strengthen the applicability of PFM methodology in Japan, Japan Atomic Energy Agency has developed a PFM analysis code called PASCAL4 (PFM Analysis of Structural Components in Aging LWRs, Version 4) which can be used to evaluate the failure frequency of reactor pressure vessels (RPVs) considering neutron irradiation embrittlement and pressurized thermal shock events. PASCAL4 is expected to make a significant contribution to the probabilistic integrity assessment of Japanese RPVs. In this study, PFM analyses are performed for a Japanese model RPV using PASCAL4, and the effects of non-destructive examination and neutron fluence mitigation on failure frequency of RPV are quantitatively evaluated. From the analysis results, it is concluded that PASCAL4 is useful for the structural integrity assessment of RPVs and can enhance the applicability of PFM methodology.


Author(s):  
Kai Lu ◽  
Jinya Katsuyama ◽  
Shumpei Uno ◽  
Yinsheng Li

Probabilistic fracture mechanics (PFM) analysis code PASCAL has been developed by Japan Atomic Energy Agency for structural integrity assessments of reactor pressure vessels (RPVs) by considering the inherent probabilistic distributions of various influence factors. For practical applications, several evaluation models are improved, and have been implemented into the current PASCAL code. In this paper, the improvements of PASCAL are introduced firstly, such as the evaluation method for underclad cracks, treatments of the complicated welding residual stress distribution, and evaluation models for the warm pre-stressing effect. In addition, the effects of these improvements on failure probability or failure frequency of RPVs are investigated by performing PFM analyses for domestic RPVs using PASCAL. From the analysis results, the effects of the improved evaluation models are discussed.


Author(s):  
Terry Dickson ◽  
Mark EricksonKirk

The current regulations, as set forth by the United States Nuclear Regulatory Commission (NRC), to insure that light-water nuclear reactor pressure vessels (RPVs) maintain their structural integrity when subjected to planned reactor startup (heat-up) and shutdown (cool-down) transients are specified in Appendix G to 10 CFR Part 50, which incorporates by reference Appendix G to Section XI of the ASME Code. The technical basis for these regulations contains many aspects that are now broadly recognized by the technical community as being unnecessarily conservative and some plants are finding it increasingly difficult to comply with the current regulations. Consequently, a goal of current NRC research is to derive a technical basis for a risk-informed revision to the current requirements that reduces the conservatism and also is consistent with the methods previously used to develop a risk-informed revision to the regulations for accidental transients such as pressurized thermal shock (PTS). Previous publications have been successful in illustrating potential methods to provide a risk-informed relaxation to the current regulations for normal transients. Thus far, probabilistic fracture mechanics (PFM) analyses have been performed at 60 effective full power years (EFPY) for one of the reactors evaluated as part of the PTS re-evaluation project. In these previous analyses / publications, consistent with the assumptions utilized for this particular reactor in the PTS re-evaluation, all flaws for this reactor were postulated to be embedded. The objective of this paper is to review the analysis results and conclusions from previous publications on this subject and to attempt to modify / generalize these conclusions to include RPVs postulated to contain only inner-surface breaking flaws or a combination of embedded flaws and inner-surface breaking flaws.


Author(s):  
Gary L. Stevens ◽  
Mark T. Kirk ◽  
Terry Dickson

For many years, ASME Section XI committees have discussed the assessment of nozzle penetrations in various flaw evaluations for reactor pressure vessels (RPVs). As summarized in Reference [1], linear elastic fracture mechanics (LEFM) solutions for nozzle penetrations have been in use since the 1970s. In 2013, one of these solutions was adopted into ASME Code, Section XI, Nonmandatory Appendix G (ASME App. G) [2] for use in developing RPV pressure-temperature (P-T) operating limits. That change to ASME App. G was based on compilation of past work [3] and additional evaluations of fracture driving force [4][5]. To establish the P-T limits on RPV operation, consideration should be given to both the RPV shell material with the highest reference temperature as well as regions of the RPV (e.g., nozzles, flange) that contain structural discontinuities. In October 2014, the U.S. Nuclear Regulatory Commission (NRC) highlighted these requirements in Regulatory Issue Summary (RIS) 2014-11 [6]. Probabilistic fracture mechanics (PFM) analyses performed to support pressurized thermal shock (PTS) evaluations using the Fracture Analysis Vessels Oak Ridge (FAVOR) computer code [7] currently evaluate only the RPV beltline shell regions. These evaluations are based on the assumption that the PFM results are controlled by the higher embrittlement characteristic of the shell region rather than the stress concentration characteristic of the nozzle, which does not experience nearly the embrittlement of the shell due to its greater distance from the core. To evaluate this assumption, the NRC and the Oak Ridge National Laboratory (ORNL) performed PFM analyses to quantify the effect of these stress concentrations on the results of the RPV PFM analyses. This paper summarizes the methods and evaluates the results of these analyses.


Sign in / Sign up

Export Citation Format

Share Document