The Simulation of Strong Ground Motion Using Empirical Green Function and Stochastic Method for Southern Taiwan Area

Author(s):  
Tsung-Jen Teng ◽  
Pei-Ting Chen ◽  
Ting-Wei Chang ◽  
Yuan-Sen Yang ◽  
Chien-Kuo Chiu ◽  
...  

This study presents strong ground motion simulation methods for the future fragility study of a power plant in Southern Taiwan. The modified stochastic method and empirical Green function method are utilized to synthesize the strong ground motions of specific events. A modified physical random function model of strong ground motions for specific sites and events is presented in this study with verification of sample level. Based on the special models of the source, path, and local site, the random variables of the physical random function of strong ground motions is obtained. The inverse Fourier transform is used to simulate strong ground motions. For the empirical Green function method, the observed site records from small earthquake events occurring around the source area of a large earthquake are collected to simulate the broadband strong ground motion from a large earthquake event. Finally, an application of proposed two simulated methods of this study for simulating the ground motion records of Nishi-Akashi Station at 1995 Kobe earthquake and 2006 Southern Taiwan PingDong earthquake are presented.

1998 ◽  
Vol 88 (2) ◽  
pp. 357-367 ◽  
Author(s):  
Katsuhiro Kamae ◽  
Kojiro Irikura ◽  
Arben Pitarka

Abstract A method for simulating strong ground motion for a large earthquake based on synthetic Green's function is presented. We use the synthetic motions of a small event as Green's functions instead of observed records of small events. Ground motions from small events are calculated using a hybrid scheme combining deterministic and stochastic approaches. The long-period motions from the small events are deterministically calculated using the 3D finite-difference method, whereas the high-frequency motions from them are stochastically simulated using Boore's method. The small-event motions are synthesized summing the long-period and short-period motions after passing them through a pair of matched filters to follow the omega-squared source model. We call the resultant time series “hybrid Green's functions” (HGF). Ground motions from a large earthquake are simulated by following the empirical Green's function (EGF) method. We demonstrate the effectiveness of the method at simulating ground motion from the 1995 Hyogo-ken Nanbu earthquake (Mw 6.9).


2016 ◽  
Vol 32 (1) ◽  
pp. 523-545 ◽  
Author(s):  
Ying Wang ◽  
Enrique Villalobos ◽  
Santiago Pujol ◽  
Hamood Al-Washali ◽  
Kazuki Suzuki ◽  
...  

The Faculty of Architecture and Engineering Building at Tohoku University survived two strong ground motions. This is not surprising because the structure was stiff and strong. What is surprising is that the first ground motion did not cause severe structural damage but the second one caused so much structural damage that the building had to be evacuated and demolished. The damage occurred despite two key facts: (1) the intensities of the mentioned ground motions are understood to have been similar and (2) the building was strengthened after the first motion (and before the second) following stringent standards.


2016 ◽  
Vol 32 (1) ◽  
pp. 75-100 ◽  
Author(s):  
Zeynep Gülerce ◽  
Bahadır Kargoığlu ◽  
Norman A. Abrahamson

The objective of this paper is to evaluate the differences between the Next Generation Attenuation: West-1 (NGA-W1) ground motion prediction models (GMPEs) and the Turkish strong ground motion data set and to modify the required pieces of the NGA-W1 models for applicability in Turkey. A comparison data set is compiled by including strong motions from earthquakes that occurred in Turkey and earthquake metadata of ground motions consistent with the NGA-W1 database. Random-effects regression is employed and plots of the residuals are used to evaluate the differences in magnitude, distance, and site amplification scaling. Incompatibilities between the NGA-W1 GMPEs and Turkish data set in small-to-moderate magnitude, large distance, and site effects scaling are encountered. The NGA-W1 GMPEs are modified for the misfit between the actual ground motions and the model predictions using adjustments functions. Turkey-adjusted NGA-W1 models are compatible with the regional strong ground motion characteristics and preserve the well-constrained features of the global models.


1996 ◽  
Vol 86 (3) ◽  
pp. 597-615 ◽  
Author(s):  
R. A. W. Haddon

Abstract Ground motions for large and moderately large earthquakes at short and moderate distances are particularly important for seismic hazard estimation in eastern North America (ENA). Very few direct observations of such ground motions have been obtained, however, because of the sparsity of recording sites and the relatively low rates of occurrence of large earthquakes inside the region. Estimation of strong ground motion must therefore rely heavily on theoretical models to extend empirical results obtained from small earthquakes and from the few larger ones for which reliable data are available. Because of the generally large distances between recording stations, the main source of useful data comes from Lg wave trains observed at relatively large distances. For the two largest earthquakes to have occurred near populated regions of southeastern Canada during the past decade, spectral ratios of the Lg wave trains of the mainshocks, with respect to those of their aftershocks, are found to depend almost entirely upon the source radiation characteristics of the sources alone. This result is utilized to derive elastodynamically-based kinematic rupture models that are consistent with the empirical spectral ratio data. Such models provide a firm physical basis from which to infer the most probable spectral characteristics for future large earthquakes in the region. In converse application, it is shown that spectral ratios obtained from such models, along with empirical seismograms from small earthquakes, can be used to accurately simulate strong ground motions at short and moderate (as well as large) distances. As such small-event seismograms are relatively plentiful, the problem of reliable strong ground motion estimation is therefore reduced to that of obtaining reliable representative source spectral models. The solution of this latter problem must continue to depend upon whatever empirical data are available and upon appropriately detailed theoretical modeling.


1985 ◽  
Vol 1 (2) ◽  
pp. 239-270 ◽  
Author(s):  
Jogeshwar P. Singh

Until recently, characteristics of strong ground motion resulting from different soil conditions were considered the dominant factor in developing design ground motions and reconciling observed damage. Interpretation of recent recordings of earthquakes by strong motion instrument arrays installed in California and Taiwan show that basic characteristics of strong motion are greatly influenced by the seismological and geological conditions. For a given soil condition, the characteristics of strong ground motion (peak ground acceleration, peak ground velocity, peak ground displacement, duration, spectral content, and time histories) can vary significantly whether the site is near or far from the seismic source. As local soil conditions only modify the ground motions produced by a given source, variability in ground motion due to seismologic and geologic conditions (for a given soil condition) must be considered in estimating earthquake ground motions for structural design or for estimating structural vulnerabilities to reconcile earthquake-related damage.


2003 ◽  
Vol 19 (1) ◽  
pp. 25-45 ◽  
Author(s):  
Isabel Cuesta ◽  
Mark A. Aschheim ◽  
Peter Fajfar

Recent studies have demonstrated the need to consider the ground motion frequency content in the development and use of R−μ−T relationships. Results from two different approaches to determining these relationships are unified in the present paper. Two bilinear R−μ−T/Tg relationships are recommended for most strong ground motions and structural systems. One is more accurate, while the other, more conservative relationship is used in FEMA 273, ATC-32, and the simple version of the N2 method. Both relationships are indexed by the characteristic period of the ground motion, Tg. Simple methods to determine Tg from smoothed design spectra and recorded ground motions are provided. Neither recommended relationships are applicable to the nearly harmonic ground motions that may be generated at sites containing soft lakebed deposits. An example illustrates the application of these relationships to a code design spectrum in both the acceleration-displacement and yield point spectra formats.


2004 ◽  
Vol 20 (1) ◽  
pp. 119-144 ◽  
Author(s):  
Ellen M. Rathje ◽  
Fadi Faraj ◽  
Stephanie Russell ◽  
Jonathan D. Bray

The frequency content of an earthquake ground motion is important because it affects the dynamic response of earth and structural systems. Four scalar parameters that characterize the frequency content of strong ground motions are (1) the mean period (Tm), (2) the average spectral period (Tavg), (3) the smoothed spectral predominant period (To), and (4) the predominant spectral period (Tp). Tm and Tavg distinguish the low frequency content of ground motions, while To is affected most by the high frequency content. Tp does not adequately describe the frequency content of a strong ground motion and is not recommended. Empirical relationships are developed that predict three parameters (Tm, Tavg, and To) as a function of earthquake magnitude, site-to-source distance, site conditions, and rupture directivity. The relationships are developed from a large strong-motion database that includes recorded motions from the recent earthquakes in Turkey and Taiwan. The new relationships update those previously developed by the authors and others. The results indicate that three site classes, which distinguish between rock, shallow soil, and deep soil, provide a better prediction of the frequency content parameters and smaller standard error terms than conventional “rock” and “soil” site classes. Forward directivity significantly increases the frequency content parameters, particularly Tm and To, at distances less than 20 km. Each of the frequency content parameters can be predicted with reasonable accuracy, but Tm is the preferred because it best distinguishes the frequency content of strong ground motions.


Sign in / Sign up

Export Citation Format

Share Document