Use of empirical Green's functions, spectral ratios, and kinematic source models for simulating strong ground motion

1996 ◽  
Vol 86 (3) ◽  
pp. 597-615 ◽  
Author(s):  
R. A. W. Haddon

Abstract Ground motions for large and moderately large earthquakes at short and moderate distances are particularly important for seismic hazard estimation in eastern North America (ENA). Very few direct observations of such ground motions have been obtained, however, because of the sparsity of recording sites and the relatively low rates of occurrence of large earthquakes inside the region. Estimation of strong ground motion must therefore rely heavily on theoretical models to extend empirical results obtained from small earthquakes and from the few larger ones for which reliable data are available. Because of the generally large distances between recording stations, the main source of useful data comes from Lg wave trains observed at relatively large distances. For the two largest earthquakes to have occurred near populated regions of southeastern Canada during the past decade, spectral ratios of the Lg wave trains of the mainshocks, with respect to those of their aftershocks, are found to depend almost entirely upon the source radiation characteristics of the sources alone. This result is utilized to derive elastodynamically-based kinematic rupture models that are consistent with the empirical spectral ratio data. Such models provide a firm physical basis from which to infer the most probable spectral characteristics for future large earthquakes in the region. In converse application, it is shown that spectral ratios obtained from such models, along with empirical seismograms from small earthquakes, can be used to accurately simulate strong ground motions at short and moderate (as well as large) distances. As such small-event seismograms are relatively plentiful, the problem of reliable strong ground motion estimation is therefore reduced to that of obtaining reliable representative source spectral models. The solution of this latter problem must continue to depend upon whatever empirical data are available and upon appropriately detailed theoretical modeling.

2010 ◽  
Vol 17 (4-5) ◽  
pp. 611-617 ◽  
Author(s):  
Artur Cichowicz

The response spectrum generally provides a good estimate of the global displacement and acceleration demand of far-field ground motion on a structure. However, it does not provide accurate information on the local shape or internal deformation of the response of the structure. Near-field pulse-like ground motion will propagate through the structure as waves, causing large, localized deformation. Therefore, the response spectrum alone is not a sufficient representation of near-field ground motion features. Results show that the drift-response technique based on a continuous shear-beam model has to be employed here to estimate structure-demand parameters when structure is exposed to the pulse like ground motion. Conduced modeling shows limited applicability of the drift spectrum based on the SDOF approximation. The SDOF drift spectrum approximation can only be applied to structures with smaller natural periods than the dominant period of the ground motion. For periods larger than the dominant period of ground motion the SDOF drift spectra model significantly underestimates maximum deformation. Strong pulse-type motions are observed in the near-source region of large earthquakes; however, there is a lack of waveforms collected from small earthquakes at very close distances that were recorded underground in mines. The results presented in this paper are relevant for structures with a height of a few meters, placed in an underground excavation. The strong ground motion sensors recorded mine-induced earthquakes in a deep gold mine, South Africa. The strongest monitored horizontal ground motion was caused by an event of magnitude 2 at a distance of 90 m with PGA 123 m/s2, causing drifts of 0.25%–0.35%. The weak underground motion has spectral characteristics similar to the strong ground motion observed on the earth's surface; the drift spectrum has a maximum value less than 0.02%.


2020 ◽  
Vol 110 (2) ◽  
pp. 452-470
Author(s):  
Masato Tsurugi ◽  
Reiji Tanaka ◽  
Takao Kagawa ◽  
Kojiro Irikura

ABSTRACT We examined high-frequency spectral decay characteristics of ground motions for inland crustal earthquakes in Japan, which are important in strong ground motion predictions. We examined 105 earthquakes (Mw 3.3–7.1), including seven large earthquakes (Mw 5.9–7.1). Spectral decay characteristics were accurately evaluated assuming the ω-squared source model and using two approaches: the fmax model (commonly used in Japan), described by the cutoff frequency fmax and the power coefficient of spectral decay s, and the κ model (commonly used in worldwide), the exponential spectral decay model, described by the parameter κ and the specific frequency fE at which a spectrum starts to decrease linearly with increasing frequency in log–linear space. For large earthquakes, we estimated fmax to range from 6.5 to 9.9 Hz and s from 0.78 to 1.60 in the fmax model, and κ to range from 0.014 to 0.051 s and fE from 2 to 4.5 Hz in the κ model. In both approaches, we found that the spectral decay characteristics are regionally dependent. fmax in the fmax model and fE in the κ model tended to be smaller for large earthquakes than for moderate and small earthquakes, clearly demonstrating a seismic moment dependency. We confirmed positive correlations between equivalent parameters of the two approaches, that is, between s and κ and between fmax and fE. Moreover, we found that both approaches are appropriate for evaluating spectral decay characteristics, as long as the spectral decay parameters are appropriately evaluated by comparison with observed spectra. We examined the effects of the spectral decay characteristics on strong ground motion predictions, and demonstrated that simulated motions corrected using the fmax model and those corrected using the κ model are almost the same. The results presented in this article contribute to improving predictions of high-frequency strong ground motion.


Author(s):  
Tsung-Jen Teng ◽  
Pei-Ting Chen ◽  
Ting-Wei Chang ◽  
Yuan-Sen Yang ◽  
Chien-Kuo Chiu ◽  
...  

This study presents strong ground motion simulation methods for the future fragility study of a power plant in Southern Taiwan. The modified stochastic method and empirical Green function method are utilized to synthesize the strong ground motions of specific events. A modified physical random function model of strong ground motions for specific sites and events is presented in this study with verification of sample level. Based on the special models of the source, path, and local site, the random variables of the physical random function of strong ground motions is obtained. The inverse Fourier transform is used to simulate strong ground motions. For the empirical Green function method, the observed site records from small earthquake events occurring around the source area of a large earthquake are collected to simulate the broadband strong ground motion from a large earthquake event. Finally, an application of proposed two simulated methods of this study for simulating the ground motion records of Nishi-Akashi Station at 1995 Kobe earthquake and 2006 Southern Taiwan PingDong earthquake are presented.


2016 ◽  
Vol 32 (1) ◽  
pp. 75-100 ◽  
Author(s):  
Zeynep Gülerce ◽  
Bahadır Kargoığlu ◽  
Norman A. Abrahamson

The objective of this paper is to evaluate the differences between the Next Generation Attenuation: West-1 (NGA-W1) ground motion prediction models (GMPEs) and the Turkish strong ground motion data set and to modify the required pieces of the NGA-W1 models for applicability in Turkey. A comparison data set is compiled by including strong motions from earthquakes that occurred in Turkey and earthquake metadata of ground motions consistent with the NGA-W1 database. Random-effects regression is employed and plots of the residuals are used to evaluate the differences in magnitude, distance, and site amplification scaling. Incompatibilities between the NGA-W1 GMPEs and Turkish data set in small-to-moderate magnitude, large distance, and site effects scaling are encountered. The NGA-W1 GMPEs are modified for the misfit between the actual ground motions and the model predictions using adjustments functions. Turkey-adjusted NGA-W1 models are compatible with the regional strong ground motion characteristics and preserve the well-constrained features of the global models.


1985 ◽  
Vol 1 (2) ◽  
pp. 239-270 ◽  
Author(s):  
Jogeshwar P. Singh

Until recently, characteristics of strong ground motion resulting from different soil conditions were considered the dominant factor in developing design ground motions and reconciling observed damage. Interpretation of recent recordings of earthquakes by strong motion instrument arrays installed in California and Taiwan show that basic characteristics of strong motion are greatly influenced by the seismological and geological conditions. For a given soil condition, the characteristics of strong ground motion (peak ground acceleration, peak ground velocity, peak ground displacement, duration, spectral content, and time histories) can vary significantly whether the site is near or far from the seismic source. As local soil conditions only modify the ground motions produced by a given source, variability in ground motion due to seismologic and geologic conditions (for a given soil condition) must be considered in estimating earthquake ground motions for structural design or for estimating structural vulnerabilities to reconcile earthquake-related damage.


Author(s):  
M. A. Roshandel Tavana ◽  
B. Asgarian

Nonlinear dynamic analysis for offshore structures has been a major challenge in marine structures and earthquake engineering. Nonlinear Dynamic Analysis of the structures subjected to strong ground motions is the most reliable prediction method. This method is very complex and expensive. An alternative procedure that has found to be much applicable in recent years is the nonlinear static analysis called push-over analysis method. Many attempts have been made to improve the predictive capabilities of the push-over analysis, particularly by employing adaptive load patterns and accounting for higher modes of vibration effects through modal push-over. In this paper, modal push-over analysis (MPA) of jacket type offshore platforms considering soil-pile-structure interaction subjected to strong ground motion has been studied and the results have been compared with “exact” nonlinear response history analysis (NLRHA). A jacket type offshore platform includes of piles, jacket and deck with different behaviors during strong ground motion. In this paper, three-dimensional model of jacket and pile has been considered using a combination of finite element method (FEM) and beam on nonlinear winkler foundation (BNWF) approach in an integrated model. Both jacket and pile elements have been modeled using fiber sections. The model has been developed using Open System for Earthquake Engineering Simulation (OpenSEES) software. In this paper, nonlinear seismic analysis of a new designed jacket type offshore platform located in Persian Gulf subjected to different levels of earthquake has been performed and the results have been compared with MPA ones. It can be concluded that the error percentage in MPA procedure is negligible when more modes of vibration are participated in the evaluation of the structure behavior.


2011 ◽  
Vol 250-253 ◽  
pp. 2546-2553 ◽  
Author(s):  
Chun Feng Li ◽  
Yong Bo Li

When earthquake occurs, it is in near-fault that the most serious damage happens and velocity pulse appears. Velocity pulse could have huge potential to destroy the structure in near-fault. The set of records at Bajiao Station is one of the three famous near-field sets of strong ground motion records whose PGAs are the largest in all the sets of records obtained from the mainshock of the Great Wenchuan Earthquake. Our research is to identify the pulse-like characteristics from the set of records at Bajiao Station. It is found that velocity pulses in the records are “hidden pulses”.


1982 ◽  
Vol 72 (6A) ◽  
pp. 1903-1909
Author(s):  
C. H. Scholz

abstract The problem we address is how to predict strong ground motions for very large earthquakes from observations made of such motions produced by events of moderate size. The discussion is in terms of two basic rupture models, a W model in which slip is controlled by fault width and an L model in which slip is controlled by fault length. Because mean slip is observed to increase linearly with fault length, a long earthquake cannot be modeled as a series of shorter events placed end to end. Rather, to explain the correlation of slip with length, a W model will predict that stress drop increases with length, whereas an L model will predict that stress drop is constant but rise time (slipping duration) increases with length. Thus, a W model predicts that peak and rms accelerations and peak and asymptotic particle velocities increase linearly with fault length. An L model predicts that rms acceleration and asymptotic velocities are independent of length but that the peak velocities increase with the square root of length and peak acceleration with InL.


Sign in / Sign up

Export Citation Format

Share Document