Identification of Key Factors of Fire Risk of Oil Depot Based on Fuzzy Clustering Algorithm

Author(s):  
Shuyi Xie ◽  
Shaohua Dong ◽  
Guangyu Zhang

Abstract With the rapid development of the national economy, the demand for oil is increasing. In order to meet the increasing energy demand, China has established a number of oil depot in recent years, whose largest capacity reaching up to tens of millions of cubic meters. Due to the flammable and explosive nature of the stored medium, the risk of fire in the oil depot area has increased dramatically as the tank capacity of the storage tank area has increased. The intensification of the oil depot and the development of large-scale oil storage tanks have brought convenience to the national oil depot, but also brought many catastrophic consequences. In recent years, there have been many fires and explosions in the oil depot, causing major casualties and property losses, which seriously endangered the ecological environment and public safety. Based on the constructed oil depot fire risk index system, the fuzzy C-means algorithm (FCM) and fuzzy maximum support tree clustering algorithm is introduced. Through the two fuzzy clustering mathematical models, key factors in the established index system are identified. Firstly, the expert scoring method is used to evaluate the indicators in the oil depot fire risk index system, and the importance degree evaluation matrix of oil depot fire risk factors is constructed through the fuzzy analysis of expert comments. Then, the fuzzy C-means algorithm (FCM) and the fuzzy clustering tree algorithm are used to cluster the various risk indicators, and the key factors of the oil depot fire risk are identified. Through the comparative analysis and cross-validation of the results of the two fuzzy clustering methods, the accuracy of the recognition results is ensured. Finally, using an oil depot as a case study, it is found that passive fire prevention capability and emergency rescue capability are key factors that need to be paid attention to in the oil depot fire risk index. The fuzzy clustering algorithm used in this paper can digitize the subjective comments of experts, thus reducing the influence of human subjective factors. In addition, by using two fuzzy clustering algorithms to analyze and verify the key factors of the oil depot fire risk, the reliability of the clustering results is guaranteed. The identification of key factors can enable managers to predict high-risk factors in advance in the fire risk prevention and control process of the oil depot, so as to adopt corresponding preventive measures to minimize the fire risk in the oil depot, and ensure the safety of the operation of the oil depot.

2012 ◽  
Vol 190-191 ◽  
pp. 265-268
Author(s):  
Ai Hong Tang ◽  
Lian Cai ◽  
You Mei Zhang

This article describes two kinds of Fuzzy clustering algorithm based on partition,Fuzzy C-means algorithm is on the basis of the hard C-means algorithm, and get a big improvement, making large data similarity as far as possible together. As a result of Simulation, FCM algorithm has more reasonable than HCM method on convergence, data fusion, and so on.


1989 ◽  
Vol 54 (10) ◽  
pp. 2692-2710 ◽  
Author(s):  
František Babinec ◽  
Mirko Dohnal

The problem of transformation of data on the reliability of chemical equipment obtained in particular conditions to other equipment in other conditions is treated. A fuzzy clustering algorithm is defined for this problem. The method is illustrated on a case study.


2021 ◽  
pp. 1-14
Author(s):  
Yujia Qu ◽  
Yuanjun Wang

BACKGROUND: The corpus callosum in the midsagittal plane plays a crucial role in the early diagnosis of diseases. When the anisotropy of the diffusion tensor in the midsagittal plane is calculated, the anisotropy of corpus callosum is close to that of the fornix, which leads to blurred boundary of the segmentation region. OBJECTIVE: To apply a fuzzy clustering algorithm combined with new spatial information to achieve accurate segmentation of the corpus callosum in the midsagittal plane in diffusion tensor images. METHODS: In this algorithm, a fixed region of interest is selected from the midsagittal plane, and the anisotropic filtering algorithm based on tensor is implemented by replacing the gradient direction of the structural tensor with an eigenvector, thus filtering the diffusion tensor of region of interest. Then, the iterative clustering center based on K-means clustering is used as the initial clustering center of tensor fuzzy clustering algorithm. Taking filtered diffusion tensor as input data and different metrics as similarity measures, the neighborhood diffusion tensor pixel calculation method of Log Euclidean framework is introduced in the membership function calculation, and tensor fuzzy clustering algorithm is proposed. In this study, MGH35 data from the Human Connectome Project (HCP) are tested and the variance, accuracy and specificity of the experimental results are discussed. RESULTS: Segmentation results of three groups of subjects in MGH35 data are reported. The average segmentation accuracy is 97.34%, and the average specificity is 98.43%. CONCLUSIONS: When segmenting the corpus callosum of diffusion tensor imaging, our method cannot only effective denoise images, but also achieve high accuracy and specificity.


1995 ◽  
Vol 05 (02) ◽  
pp. 239-259
Author(s):  
SU HWAN KIM ◽  
SEON WOOK KIM ◽  
TAE WON RHEE

For data analyses, it is very important to combine data with similar attribute values into a categorically homogeneous subset, called a cluster, and this technique is called clustering. Generally crisp clustering algorithms are weak in noise, because each datum should be assigned to exactly one cluster. In order to solve the problem, a fuzzy c-means, a fuzzy maximum likelihood estimation, and an optimal fuzzy clustering algorithms in the fuzzy set theory have been proposed. They, however, require a lot of processing time because of exhaustive iteration with an amount of data and their memberships. Especially large memory space results in the degradation of performance in real-time processing applications, because it takes too much time to swap between the main memory and the secondary memory. To overcome these limitations, an extended fuzzy clustering algorithm based on an unsupervised optimal fuzzy clustering algorithm is proposed in this paper. This algorithm assigns a weight factor to each distinct datum considering its occurrence rate. Also, the proposed extended fuzzy clustering algorithm considers the degree of importances of each attribute, which determines the characteristics of the data. The worst case is that the whole data has an uniformly normal distribution, which means the importance of all attributes are the same. The proposed extended fuzzy clustering algorithm has better performance than the unsupervised optimal fuzzy clustering algorithm in terms of memory space and execution time in most cases. For simulation the proposed algorithm is applied to color image segmentation. Also automatic target detection and multipeak detection are considered as applications. These schemes can be applied to any other fuzzy clustering algorithms.


2007 ◽  
Vol 27 (3) ◽  
pp. 237-248 ◽  
Author(s):  
Xiao-Ying Wang ◽  
Jonathan M. Garibaldi ◽  
Benjamin Bird ◽  
Michael W. George

Sign in / Sign up

Export Citation Format

Share Document