Proposal for a Total Fatigue Life Assessment Methodology That Predicts Fatigue Life From Defect Initiation to Through Wall Leak

Author(s):  
Joseph Batten ◽  
Chris Currie ◽  
Jonathan Mann ◽  
Andrew Morley

Abstract Even with improvements to remove excessive conservatisms, current fatigue assessment approaches can result in high Cumulative Usage Factors (CUFs) for some analyses. In order to improve plant availability from these assessments and mitigate future changes to design codes, an improvement in understanding in this area is desirable. Hence the proposal for a Life Assessment Methodology (LAM) was created. The LAM is a concept for an approach based on modelling each stage of fatigue life to predict total fatigue life, as a means of minimising conservatism in an assessment, where necessary. It should also be capable of incorporating statistical methods to assign reliability figures to calculated plant lives. This paper describes the proposed definition of the LAM and how a proof of concept version of the LAM was developed to assess the Bettis Bechtel Stepped Pipe (BBSP) test. The results were presented with two seeded cases (fixed inputs) and a range of lives corresponding to associated Target Reliabilities (TRs). The Best Estimate (BE) and TR associated lives produced were based on using the latest methods available for calculating Fatigue Initiation (FI) and Fatigue Crack Growth (FCG), whereas the seeded Effective Strain Range (ESR) comparison case used current deterministic assessment methods. The results for the case study concluded that there is a benefit to pursuing the development of the LAM when compared to traditional assessment methods. It highlighted and quantified the conservatism present in traditional assessment methods for these cases as well as the need to understand the required TR for a specific component as this can have a large effect on the predicted life. With further refinements to the method, a more realistic and robust output of the total fatigue life distribution (for specific cases) would be obtained, which in turn would allow us to better quantify the conservatism associated with a TR.


2020 ◽  
Vol 116 ◽  
pp. 104725
Author(s):  
Ruixian Xiu ◽  
Maksym Spiryagin ◽  
Qing Wu ◽  
Shuchen Yang ◽  
Yanwen Liu




Author(s):  
Fre´de´ric Demanze ◽  
Didier Hanonge ◽  
Alain Chalumeau ◽  
Olivier Leclerc

Following some experiences of bending stiffeners fatigue failures during full scale tests performed at Flexi France on flexible pipe and stiffener assemblies, Technip decided to launch in 1999 a major research program on fatigue life analysis of bending stiffeners made of Polyurethane material. This fatigue life assessment is now systematically performed by Technip for all new design of flexible riser bending stiffeners. This totally innovative method comprises a number of features as follows: Firstly fatigue behaviour of polyurethane material is described. The theoretical background, based on effective strain intensity factor, is detailed, together with experimental results on laboratory notched samples, solicited under strain control for various strain ratios, to obtain fatigue data. These fatigue data are well fitted by a power law defining the total number of cycles at break as a function of the effective strain intensity factor. The notion of fatigue threshold, below which no propagation is observed, is also demonstrated. Secondly the design used by Technip for its bending stiffeners, and most of all the critical areas regarding fatigue for these massive polyurethane structures are presented. Thirdly the methodology for fatigue life assessment of bending stiffeners in the critical areas defined above is discussed. Calibration of the strain calculation principle is presented versus finite element analysis. Based on all fatigue test results, the size of the equivalent notch to be considered at design stage, in the same critical areas, is discussed. Finally, a comprehensive calibration of the methodology according to full and middle scale test results is presented. The present paper is therefore a step forward in the knowledge of fatigue behaviour of massive polyurethane bending stiffener structures, which are critical items for flexible risers integrity, and widely used in the offshore industry. The confidence in bending stiffeners reliability is greatly enhanced by the introduction of this innovative methodology developed by Technip.



Author(s):  
Koji Miyoshi ◽  
Masayuki Kamaya

Abstract Mixing flow causes fluctuations in fluid temperature near a pipe wall and may result in fatigue crack initiation. Movement of the hot spot, at which the pipe inner surface was heated by hot flow from the branch pipe, causes thermal stress fluctuations. In this study, the effect of the loading sequence on thermal fatigue in a mixing tee was investigated. In addition, the prediction method of the fatigue life for the variable thermal strain in the mixing tee was discussed. The time histories of the strain around the hot spot were estimated by finite element analysis for which the temperature condition was determined by wall temperature measured in a mock-up test. The accumulated fatigue damage around the hot spot obtained by Miner's rule was less than 1.0. Since the strain around the hot spot had waveforms with periodic overload, the loading sequence with periodic overload caused reduction of the fatigue life around the hot spot. Crack growth tests showed that a single overload decreased crack opening strain and increased the effective strain range. The increment of the effective strain range accelerated the crack growth rate after the overload. The accumulated fatigue damage for the strain in the mixing tee was calculated using Miner's rule and the strain ranges which added the maximum increment of the effective strain range. The accumulated fatigue damage was larger than 1.0 under most conditions. The proposed procedure is suitable to predict the conservative fatigue life in a mixing tee.



Author(s):  
M.-H. Herman Shen ◽  
Sajedur R. Akanda

A previously developed energy based high cycle fatigue (HCF) life assessment framework is modified to predict the low cycle fatigue (LCF) life of aluminum 6061-T6. The fatigue life assessment model of this modified framework is formulated in a closed form expression by incorporating the Ramberg–Osgood constitutive relationship. The modified framework is composed of the following entities: (1) assessment of the average strain energy density and the average plastic strain range developed in aluminum 6061-T6 during a fatigue test conducting at the ideal frequency for optimum energy calculation, and (2) determination of the Ramberg–Osgood cyclic parameters for aluminum 6061-T6 from the average strain energy density and the average plastic strain range. By this framework, the applied stress range is related to the fatigue life by a power law whose parameters are functions of the fatigue toughness and the cyclic parameters. The predicted fatigue lives are found to be in a good agreement with the experimental data.



2021 ◽  
Vol 1201 (1) ◽  
pp. 012036
Author(s):  
B Villoria ◽  
S C Siriwardane ◽  
H G Lemu

Abstract Orthotropic Steel Decks have been used in long-span bridges for several decades because of their high capacity to weight ratio. However, many fatigue related issues have been reported. This paper provides an overview of the main existing fatigue prediction models and discusses their relevance for the fatigue life assessment of Orthotropic Steel Bridge Decks (OSBDs). Several case studies have proven the importance of considering the combined effect of wind and traffic loadings to estimate the fatigue life of long-span bridges. The importance of incorporating welding residual stresses is also well documented while it is often disregarded in design practices. Reliability-based fatigue assessment methods make it possible to quantify how the sources of uncertainty related to loading conditions, welding residual stresses or fabrication defects can affect the fatigue reliability of OSBDs. Monte Carlo simulations are often used to perform probabilistic analyses, but machine-learning algorithms are very promising and computationally efficient. The shortcomings of the Palmgren-Miner rule are discussed and the need for alternative damage accumulation indexes is clear. A number of conclusions are drawn from the analysis of fatigue tests conducted on OSBDs.



Sign in / Sign up

Export Citation Format

Share Document