A Fatigue Crack Growth Model for Type 304 Austenitic Stainless Steels in an Elevated Temperature Air Environment

2021 ◽  
Author(s):  
Kathleen C. Barron

Abstract The American Society of Mechanical Engineers (ASME) Boiler and Pressure Vessel Code, Section XI utilizes reference fatigue crack growth rate (FCGR) curves for flaw evaluations. The current ASME reference curve for austenitic stainless steels in air environments is a Paris-Law relation with a single ΔK exponent that covers the entire ΔK range. Since generation of the model that became the ASME reference curve, extensive additional FCGR testing of Type 304, Type 304L, and Type 304/304L dual-certified stainless steel and the corresponding weld metal has been performed in an elevated temperature air environment. This testing revealed fatigue crack growth (FCG) behaviors that were not adequately captured by the ASME reference curve. In particular, the ASME reference curve failed to capture a flattening of the FCGR curve in the intermediate ΔK range before the FCGRs sharply dropped off as the threshold behavior is approached. Additionally, the FCGR data showed a slight frequency-dependence. Based on this new data, a new FCGR model was generated for Type 304 austenitic stainless steels in air environments between 250°C and 338°C. A tri-linear Paris-Law style correlation was chosen for the updated FCGR model to accommodate both the flattening of the FCGR curve at intermediate ΔK levels and the sharp downturn in the near-threshold ΔK regime. Each of the three branches of the FCGR curve exhibit a different R-ratio dependence, with the near-threshold regime being the most sensitive to changes in the R-ratio.

Author(s):  
Yuichiro Nomura ◽  
Kazuya Tsutsumi ◽  
Hiroshi Kanasaki ◽  
Naoki Chigusa ◽  
Kazuhiro Jotaki ◽  
...  

Although reference fatigue crack growth curves for austenitic stainless steels in air environments and boiling water reactor (BWR) environments were prescribed in JSME S NA1-2002, similar curves for pressurized water reactors (PWR) were not prescribed. In order to propose the reference curve in PWR environment, fatigue tests of austenitic stainless steels in simulated PWR primary water environment were carried out. According to the procedure to determine the reference fatigue crack growth curve of BWR, which of PWR is proposed. The reference fatigue crack growth curve in PWR environment have been determines as a function of stress intensity factor range, Temperature, load rising time and stress ratio.


2000 ◽  
Vol 123 (2) ◽  
pp. 166-172 ◽  
Author(s):  
M. Itatani ◽  
M. Asano ◽  
M. Kikuchi ◽  
S. Suzuki ◽  
K. Iida,

Fatigue crack growth data obtained in the simulated BWR water environment were analyzed to establish a formula for reference fatigue crack growth rate (FCGR) of austenitic stainless steels in BWR water. The effects of material, mechanical and environmental factors were taken into the reference curve, which was expressed as: da/dN=8.17×10−12s˙Tr0.5s˙ΔK3.0/1−R2.121≦ΔK≦50 MPam where da/dN is fatigue crack growth rate in m/cycle, Tr is load rising time in seconds, ΔK is range (double amplitude) of K–value in MPam, and R is stress ratio. Tr=1 s if Tr<1 s, and Tr=1000 s if Tr cannot be defined. ΔK=Kmax−Kmin if R≧0.ΔK=Kmax if R<0.R=Kmin/Kmax. The proposed formula provides conservative FCGR at low stress ratio. Although only a few data show higher FCGR than that by proposed formula at high R, these data are located in a wide scatter range of FCGR and are regarded to be invalid. The proposed formula is going to be introduced in the Japanese Plant Operation and Maintenance Standard.


Author(s):  
Hisatake Itoga ◽  
Takashi Matsuo ◽  
Akihiro Orita ◽  
Hisao Matsunaga ◽  
Saburo Matsuoka ◽  
...  

Slow strain rate tests (SSRTs) were performed with two types of high-strength austenitic stainless steels, Types AH and BX, as well as with two types of conventional austenitic stainless steels, Types 304 and 316L. The tests used the following combinations of specimen types and test atmospheres: (i) non-charged specimens tested in air, (ii) hydrogen-charged specimens tested in air (tests for internal hydrogen), and (iii) non-charged specimens tested in hydrogen gas at pressures of 78 ∼ 115 MPa (tests for external hydrogen). Type 304 exhibited a marked reduction of ductility in the tests for both internal hydrogen and external hydrogen, whereas Types AH, BX and 316L exhibited little or no degradation. In addition, fatigue crack growth (FCG) tests for the four types of steels were also carried out in air and hydrogen gas at pressures of 100 ∼ 115 MPa. In Type 304, FCG in hydrogen gas was more than 10 times as fast as that in air, whereas the acceleration rate remained within 1.5 ∼ 3 times in Types AH, BX and 316L. It was presumed that, in Types AH and BX, a small amount of additive elements, e.g. nitrogen and niobium, increased the strength as well as the stability of the austenitic phase, which thereby led to the excellent resistance against hydrogen.


2021 ◽  
Author(s):  
Russell C. Cipolla ◽  
Warren H. Bamford ◽  
Kiminobu Hojo ◽  
Yuichiro Nomura

Abstract Reference fatigue crack growth curves for austenitic stainless steels exposed to pressurized water reactor environments have been available in the ASME Code, Section XI in their present form with the publication of Code Case N-809 in Supplement 2 to the 2015 Code Edition. The reference curves are dependent on temperature, loading rate (loading rise time), mean stress (R-ratio), and cyclic stress intensity factor range (ΔK), which are all contained in the model. Since the first implementation of this Code Case, additional data have become available, and the purpose of this paper is to provide the technical basis for revision of the Code Case. Changes have been made in three areas: R-ratio behavior, threshold for crack growth (ΔKth), and crack growth rate dependence on ΔK. In addition, the temperature model was revisited to study the temperature effects for T &lt; 150°C, where the current model predicts an increase in da/dN based on limited test data at about 100°C (200°F). At this point, the current temperature model is considered conservative and no change is proposed in this revision to N-809. The R-ratio model has been revised for both high and low carbon stainless steels, a significant improvement over the original procedures. Perhaps the most important revision is in the area of the threshold for the initiation of fatigue crack growth; such data are difficult to obtain, and the previous model was very conservative. Finally, the crack growth exponent was revised slightly to make it consistent with the regression analysis of the original data.


2017 ◽  
Vol 741 ◽  
pp. 88-93 ◽  
Author(s):  
Kunio Hasegawa ◽  
Saburo Usami

The fatigue crack growth threshold ΔKth is an important characteristic of crack growth assessment for the integrity of structural components. However, the accurate threshold ΔKth values for austenitic stainless steels in air environment are lacking in many fitness-for-service (FFS) codes, although fatigue crack growth tests have been performed and many test data had been published. This paper focuses on fatigue crack growth threshold ΔKth values for austentic stainless steel in air environment. The paper introduces the current ΔKth values provided by four major FFS codes and summarizes the available test data based on the literature survey. The paper then discusses the applicability of the existing ΔKth for stainless steels and proposes a new relation as a function of the stress ratio (the R ratio) for use by FFS codes.


Author(s):  
Masao Itatani ◽  
Takuya Ogawa ◽  
Chihiro Narazaki ◽  
Toshiyuki Saito

The Rules on Fitness-for-Service for Nuclear Power Plants of the Japan Society of Mechanical Engineers (JSME Code) has the reference fatigue crack growth curve for austenitic stainless steels in BWR environment. This reference curve was determined as the upper bound of crack growth data excluding the outlier data. However, the other reference curves for fatigue crack growth rate such as austenitic stainless steels and ferritic steels in air environment and ferritic steels in water environment in the ASME Boiler and Pressure Vessel Code, Section XI and the JSME Code, austenitic stainless steels in PWR environment in the JSME Code and Ni-base alloys in PWR environment in the JSME Code Case are determined based on the 95% upper confidential limit by statistic data treatment. In the present study, the fatigue crack growth data of austenitic stainless steels in BWR environment were re-evaluated statistically. It was found that the current reference curve almost coincides with 95% upper confidential limit of fatigue crack growth data in the Paris region. Consequently, the current reference fatigue crack growth curve for austenitic stainless steels in BWR environment in the JSME Code can be regarded to stand on the same technical bases with other reference fatigue crack growth curves. Furthermore, the authors proposed to extend applicable upper bound of load rising time tr from 1000 s to 32000 s.


2021 ◽  
Author(s):  
Kathleen C. Barron ◽  
Denise J. Paraventi

Abstract The American Society of Mechanical Engineers (ASME) Boiler and Pressure Vessel Code, Section XI utilizes reference fatigue crack growth rate (FCGR) curves for flaw evaluations. Code Case N-809 describes a reference curve currently used in flaw evaluations of austenitic stainless steels exposed to a pressurized water reactor (PWR) environment in accordance with ASME, Section XI. Recently, an extensive database of Type 304, Type 304L, and Type 304/304L dual-certified stainless steels and the corresponding weld metal in PWR environments was assessed and an updated FCGR model generated. This database includes previously unreported FCGR data in 100°C PWR environments at an R-ratio of 0.7 and a rise time of either 51 sec or 510 sec. The results of this lower temperature testing are reported here and do not support the non-Arrhenius temperature relation in Code Case N-809, which predicts an increase in FCGRs with decreasing temperature below a temperature of 150°C. The updated model more accurately describes the FCGR behavior in the near-threshold, low ΔK regime. Additionally, the updated model eliminates the non-Arrhenius temperature dependence of the Code Case N-809 reference curves for temperatures below 150°C and replaces it with a single Arrhenius temperature dependence between 100°C and 338°C. Similar to the Code Case N-809 reference curve, this model does not describe the severely retarded FCGR behavior that has been observed to occur for austenitic stainless steel under certain conditions, nor does it attempt to predict the conditions under which severe retardation is likely to occur.


1999 ◽  
Vol 65 (634) ◽  
pp. 1343-1348 ◽  
Author(s):  
Hisashi HIRUKAWA ◽  
Saburo MATSUOKA ◽  
Etsuo TAKEUCHI ◽  
Takahito OMURA ◽  
Koji YAMAGUCHI ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document