Evaluating Relationship Between Passive Knee Envelope and a Dynamically Simulated Walk

Author(s):  
Amit M. Mane ◽  
Lorin P. Maletsky

The motion patterns of the human knee joint depend on its passive motion characteristics, which are described by the ligamentious and articular constraints. Since active motions, like walking and squatting are believed to fall within a passive envelope, the basis for the understanding of the knee joint kinematics lies in the description of its passive constraint characteristics [1]. The link between the knee passive envelope and the kinematics during various dynamic activities has not been studied. It is unclear how the articular geometry and muscle activations of the knee influence the contribution of ligament constraints during dynamic activities. To explain the relationship between knee passive envelope and dynamic activities completely, new methodology must be developed. The objective of the present study was to estimate the effects of variation in passive knee envelope on the tibiofemoral kinematics during dynamically simulated gait using a multivariate analysis technique, principal component (PC) analysis.

Author(s):  
Adam Cyr ◽  
Lorin Maletsky

The motion patterns of the human knee joint depend on its passive motion characteristics, which are described by the ligamentous and articular constraints. Since active motions, like walking and squatting are believe to fall within a passive envelope, the basis for the understanding of the knee joint kinematics lies in the description of its passive characteristics.


Author(s):  
Amit M. Mane ◽  
Chadd W. Clary ◽  
Amber N. Reeve ◽  
Lorin P. Maletsky ◽  
David FitzPatrick

The motion patterns of the human knee joint depend on its passive motion characteristics, which are described by the ligamentious and articular constraints. Since active motions, like walking and squatting are believed to fall within a passive envelope, the basis for the understanding of the knee joint kinematics lies in the description of its passive constraint characteristics [1]. Although several authors studied passive envelope characteristics of a knee, it is not clear from the literature which anatomical structures guide the knee in passive or active motion and how their geometric arrangement produces the unique path of passive knee motion [1–3]. A few mathematical models have been developed to study the structures that guide the passive knee motion [1, 2]. However, their hypotheses were not supported by a sufficiently detailed ligament bundle model, soft tissue properties, ligament insertion-origin sites and their intra-subject variability. To explain the relationship between knee anatomy and its variability with three-dimensional knee motion completely, new methodology must be developed. The objective of the present study was to estimate the effects of variation in knee anatomical factors on the tibiofemoral passive envelope using a multivariate analysis technique, principal component (PC) analysis.


1985 ◽  
Vol 18 (7) ◽  
pp. 529-530
Author(s):  
L. Blankevoort ◽  
R. Huiskes ◽  
A. de Lange

1991 ◽  
Vol 113 (4) ◽  
pp. 392-396 ◽  
Author(s):  
Dortmans ◽  
H. Jans ◽  
A. Sauren ◽  
A. Huson

A description is given of the results obtained for step excitation for two human knee joint specimens using a time-domain analysis technique. As was expected from the results of a previous study, the magnitude of the dynamic load applied has a marked influence upon the stiffness and damping values for the two observed vibration modes. Deliberate damaging of selected joint elements also yields a well observable change in the dynamic behavior of the joint although these changes are difficult to interpret. Here the use of a nonlinear dynamic numerical model of the knee joint seems indispensable. An important observation is, however, that the experimental method discussed here enables to quantify the behavior of the joint and therefore may provide a valuable tool for validation of such a model.


2018 ◽  
Vol 00 (1) ◽  
pp. 109-118
Author(s):  
Enas Y. Abdullah ◽  
◽  
Naktal Moid Edan ◽  
Athraa N. Kadhim ◽  
◽  
...  

Sign in / Sign up

Export Citation Format

Share Document