Experimental Test Results for a Fiber Bragg Grating-Based Flow Sensor

Author(s):  
Robbert Pannekeet ◽  
Rodrigo Rodriguez-Erdmenger ◽  
Eric J. Ruggiero ◽  
Alexander Simpson ◽  
Christopher Wolfe

A fiber optic-based mass flow sensor has been developed that uses fiber Bragg gratings to deduce flow velocity. Flow velocity, local temperature, pressure measurements (that all can be extracted using fiber Bragg gratings) and geometric information can be combined to determine mass flow. A range of concepts have been investigated and compared using the same “design of experiment” for each sensor. The most promising concept has been further developed into a prototype. The working prototype successfully demonstrated a thermally insensitive sensor design that has the capability to track flow velocities. The sensor design is incorporated directly with a structural beam element to magnify the strain effect while simultaneously compensating for thermally-induced wavelength shifts in the sensor response. Further testing has been performed using three flexible beams at different angular positions showing that flow angles can be measured similar to the approach used for 3-hole pneumatic probes. As a final test, the sensor has been tested in a shock tube demonstrating superior performance compared to steady pneumatic measurements which rely on tubing to reach the measurement location.

Author(s):  
Il Doh ◽  
Il-Bum Kwon ◽  
Jiho Chang ◽  
Sejong Chun

Abstract A surface flow sensor is needed if turbulent drag force is to be measured over a vehicle, such as a car, a ship, and an airplane. In case of automobile industry, there are no automobile manufacturers which measure surface flow velocity over a car for wind tunnel testing. Instead, they rely on particle image velocimetry (PIV), pressure sensitive paint (PSP), laser Doppler anemometry (LDA), pitot tubes, and tufts to get information regarding the turbulent drag force. Surface flow sensors have not devised yet. This study aims at developing a surface flow sensor for measuring turbulent drag force over a rigid body in a wind tunnel. Two sensing schemes were designed for the fiber-optic distributed sensor and the thermal mass flow sensor. These concepts are introduced in this paper. As the first attempt, a thermal mass flow sensor has been fabricated. It was flush-mounted on the surface of a test section in the wind tunnel to measure the surface flow velocity. The thermal mass flow sensor was operated by either constant current or constant resistance modes. Resistance ratio was changed as the electric current was increased by the constant current mode, while power ratio was saturated as the resistance was increased by the constant resistance mode. Either the resistance ratio or the power ratio was changed with the flow velocity measured by a Pitot tube, located at the center of test section.


Author(s):  
A. V. Umnova ◽  
A. S. Aleinik ◽  
V. E. Strigalev ◽  
V. A. Novikova ◽  
A. N. Ashirov

2006 ◽  
Vol 127 (1) ◽  
pp. 63-68 ◽  
Author(s):  
Charles Jewart ◽  
Ben McMillen ◽  
Sung Kwon Cho ◽  
Kevin P. Chen

2012 ◽  
Author(s):  
Wenjuan Yao ◽  
Wei Peng ◽  
Xinpu Zhang ◽  
Xinlei Zhou ◽  
Yun Liu

Optik ◽  
2020 ◽  
Vol 214 ◽  
pp. 164583
Author(s):  
Qihao Hu ◽  
Pengrui Wang ◽  
Meng Wang ◽  
Zefeng Wang

Sign in / Sign up

Export Citation Format

Share Document