strain effect
Recently Published Documents


TOTAL DOCUMENTS

733
(FIVE YEARS 175)

H-INDEX

41
(FIVE YEARS 8)

2022 ◽  
Vol 141 ◽  
pp. 106400
Author(s):  
K.A. Rodríguez-Magdaleno ◽  
R. Pérez-Álvarez ◽  
F. Ungan ◽  
J.C. Martínez-Orozco

2022 ◽  
Author(s):  
Yogendra Limbu ◽  
Gopi Chandra Kaphle ◽  
Alok Lal Karn ◽  
Niraj Kumar Shah ◽  
Durga Paudyal

From first principles electronic structure calculations, we unravel the evolution of structural, electronic, and magnetic properties of pristine, defected, and strained titanium nitride MXene with different functional groups (-F, -O, -H, and -OH). The formation and cohesive energies reveal their chemical stability. The MAX phase and defect free functionalized MXenes are metallic except for oxygen terminated (Ti 2 NO 2 ) one which is 100% spin polarized half-metallic ferromagnet. The spin-orbit coupling significantly influences the bare MXene (Ti 2 N) to exhibit Dirac topology and band inversion near the high symmetry directions and Fermi level. The strain effect sways the Fermi level thereby shifting it toward lower energy state under compression and toward higher energy state under tensile strain in Ti 2 NH 2 . The Ti 2 NO 2 exhibits exotic electronic structure and magnetic states not only in pristine but also in strained and defected structures. Its half-metallic nature changes to semi-metallic under 1% compression and it is completely destroyed under 2% compression. In single vacancy defect, its band structure remarkably transforms from half-metallic to semi-conducting with large band gap in 12.5% Ti, weakly semi-conducting in 5.5% Ti, and semi-metallic in 12.5% O. The 25% N defect changes it’s half-metallic characteristic to metallic. Further, the 12.5% Co substitution preserves it’s half-metallic character, whereas Mn substitution allows it to convert half-metallic characteristic into weak semi-metallic characteristic preserving ferromagnetism. However, Cr substitution converts half-metallic ferromagnetic state to half-metallic anti-ferromagnetic state. The understanding made here on collective structural stability, and electronic band structure, and magnetic phenomena in novel 2D Ti 2 N derived MXenes open up their possibility in designing them for synthesis and thereby taking to applications.


Author(s):  
Qi Wang ◽  
Zhilu Zhang ◽  
Hai-Cai Huang ◽  
Xinyu song ◽  
Yuxiang Bu

The strain effect on the magnetic response of the 2D materials as spintronic devices are always important in actual applications. Due to the intriguing electronic and magnetic properties of two-dimensional...


Author(s):  
Linqiang Xu ◽  
Ruge Quhe ◽  
Qiuhui Li ◽  
Shiqi Liu ◽  
Jie Yang ◽  
...  

Indium phosphide (InP) has higher electron mobility, electron saturation velocity, and drain current than silicon (Si), and the ultra-thin (UT) InP field-effect transistor (FET) probably possesses a better device performance...


2021 ◽  
Author(s):  
Kushal Bhattacharyya

Failure mechanism of 20MnMoNi55 steel in the lower self of ductile to brittle transition (DBT) region is considered as brittle fracture but it has been observed from the experimental analysis of stress-strain diagram that clear plastic deformation is shown by the material before failure. Therefore, strain correction is implemented in the cleavage fracture model proposed by different researchers in the lower self of the DBT region with the help of finite element analysis. To avoid a huge number of experiments being performed, Monte Carlo simulation is used to generate a huge number of random data at different temperatures in the lower self of the DBT region for calibration of the cleavage parameters with the help of the master curve methodology. Fracture toughness calculated after strain correction through different models are validated with experimental results for the different probability of failures.


2021 ◽  
pp. 122798
Author(s):  
Saheefa Rasheed ◽  
Sheraz Ahmad ◽  
Bin Amin ◽  
Fawad Khan ◽  
Tabassum Nasir ◽  
...  

Small ◽  
2021 ◽  
pp. 2105201
Author(s):  
Yixin Hao ◽  
Shuo Sun ◽  
Xihua Du ◽  
Jiangtao Qu ◽  
Lanlan Li ◽  
...  

Author(s):  
Alessandro Soli ◽  
Ivan Langella ◽  
Zhi X. Chen

AbstractThe physical mechanism leading to flame local extinction remains a key issue to be further understood. An analysis of large eddy simulation (LES) data with presumed probability density function (PDF) based closure (Chen et al., 2020, Combust. Flame, vol. 212, pp. 415) indicated the presence of localised breaks of the flame front along the stoichiometric line. These observations and their relation to local quenching of burning fluid particles, together with the possible physical mechanisms and conditions allowing their appearance in LES with a simple flamelet model, are investigated in this work using a combined Lagrangian-Eulerian analysis. The Sidney/Sandia piloted jet flames with compositionally inhomogeneous inlet and increasing bulk speeds, amounting to respectively 70 and 90% of the experimental blow-off velocity, are used for this analysis. Passive flow tracers are first seeded in the inlet streams and tracked for their lifetime. The critical scenario observed in the Lagrangian analysis, i.e., burning particles crossing extinction holes on the stoichiometric iso-surface, is then investigated using the Eulerian control-volume approach. For the 70% blow-off case the observed flame front breaks/extinction holes are due to cold and inhomogeneous reactants that are cast onto the stoichiometric iso-surface by large vortices initiated in the jet/pilot shear layer. In this case an extinction hole forms only when the strain effect is accompanied by strong subgrid mixing. This mechanism is captured by the unstrained flamelets model due to the ability of the LES to resolve large-scale strain and considers the SGS mixture fraction variance weakening effect on the reaction rate through the flamelet manifold. Only at 90% blow-off speed the expected limitation of the underlying combustion model assumption become apparent, where the amount of local extinctions predicted by the LES is underestimated compared to the experiment. In this case flame front breaks are still observed in the LES and are caused by a stronger vortex/strain interaction yet without the aid of mixture fraction variance. The reasons for these different behaviours and their implications from a physical and modelling point of view are discussed in this study.


Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Ma Haifeng ◽  
Yao Fanfan ◽  
Niu Xin’gang ◽  
Guo Jia ◽  
Li Yingming ◽  
...  

In order to obtain the mechanical behavior and permeability characteristics of coal under the coupling action of stress and seepage, permeability tests under different confining pressures in the process of deformation and destruction of briquette coal were carried out using the electrohydraulic servo system of rock mechanics. The stress-strain and permeability evolution curves of briquette coal during the whole deformation process were obtained. The mechanical behavior and permeability coefficient evolution response characteristics of briquette coal under stress-seepage coupling are well reflected. Research shows that stress-axial strain curve and the stress-circumferential strain curve have the same change trend, the hoop strain and axial strain effect on the permeability variation law of basic consistent, and the permeability coefficient with the increase of confining pressure and decreases, and the higher the confining pressure, the lower the permeability coefficient, the confining pressure increases rate under the same conditions, and the permeability coefficient corresponding to high confining pressure is far less than that corresponding to low confining pressure. The confining pressure influences the permeability of the briquette by affecting its dilatancy behavior. With the increase of the confining pressure, the permeability of the sample decreases, and the permeability coefficient decreases with the increase of the confining pressure at the initial stage, showing a logarithmic function. After failure, briquette samples show a power function change rule, and the greater the confining pressure is, the more obvious the permeability coefficient decreases.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Lu Cao ◽  
Wenyao Liu ◽  
Geng Li ◽  
Guangyang Dai ◽  
Qi Zheng ◽  
...  

AbstractFor iron-based superconductors, the phase diagrams under pressure or strain exhibit emergent phenomena between unconventional superconductivity and other electronic orders, varying in different systems. As a stoichiometric superconductor, LiFeAs has no structure phase transitions or entangled electronic states, which manifests an ideal platform to explore the pressure or strain effect on unconventional superconductivity. Here, we observe two types of superconducting states controlled by orientations of local wrinkles on the surface of LiFeAs. Using scanning tunneling microscopy/spectroscopy, we find type-I wrinkles enlarge the superconducting gaps and enhance the transition temperature, whereas type-II wrinkles significantly suppress the superconducting gaps. The vortices on wrinkles show a C2 symmetry, indicating the strain effects on the wrinkles. By statistics, we find that the two types of wrinkles are categorized by their orientations. Our results demonstrate that the local strain effect with different directions can tune the superconducting order parameter of LiFeAs very differently, suggesting that the band shifting induced by directional pressure may play an important role in iron-based superconductivity.


Sign in / Sign up

Export Citation Format

Share Document