Elastic Compensation of Linear Shape Memory Alloy Actuators Using Compliant Mechanisms

Author(s):  
Giovanni Scirè Mammano ◽  
Eugenio Dragoni

The paper presents a modular architecture for SMA actuators elastically compensated by thin beams loaded axially beyond their buckling limit. Starting from the exact equations for the elastic curve of the beams, an approximate procedure is developed for the engineering design of the entire compensating system. The theory of the compensator is validated successfully against a finite element model and experimental results. The experimental characterization of a complete prototype actuator shows that the forces generated by the compensated actuator are constant for both instroke and outstroke over the full range of displacements. The actuator concept proposed lends itself to modular assembly to multiply either the stroke covered (series combination) or the force generated (parallel combination).

Author(s):  
Randall L. Mayes ◽  
G. Richard Eisler

Abstract Experiments were performed to verify the analytical models for a robotic manipulator with two flexible links. A finite element model (FEM) employing two-dimensional beam elements was used to model the structure. A proportional model relating input voltage to output torque was used for both hub and elbow joint motors. With some minor adjustments to the link stiffness, the FEM modal frequencies matched the experimentally extracted frequencies within 1.5%. However the voltage-torque relationship for the hub motor was found to exhibit dynamics in the frequency range of interest.


Author(s):  
Randall L. Mayes ◽  
G. Richard Eisler

Abstract Experiments were performed to verify the analytical models for a robotic manipulator with two flexible links. A finite element model (FEM) employing two-dimensional beam elements was used to model the structure. A proportional model relating input voltage to output torque was used for both hub and elbow joint motors. With some minor adjustments to the link stiffness, the FEM modal frequencies matched the experimentally extracted frequencies within 1.5%. However the voltage-torque relationship for the hub motor was found to exhibit dynamics in the frequency range of interest.


Author(s):  
Adriel Morgado de Moraes ◽  
Luciana Loureiro da Silva Monteiro ◽  
Ricardo Alexandre Amar de Aguiar

2002 ◽  
Vol 716 ◽  
Author(s):  
C. L. Gan ◽  
C. V. Thompson ◽  
K. L. Pey ◽  
W. K. Choi ◽  
F. Wei ◽  
...  

AbstractElectromigration experiments have been carried out on simple Cu dual-damascene interconnect tree structures consisting of straight via-to-via (or contact-to-contact) lines with an extra via in the middle of the line. As with Al-based interconnects, the reliability of a segment in this tree strongly depends on the stress conditions of the connected segment. Beyond this, there are important differences in the results obtained under similar test conditions for Al-based and Cu-based interconnect trees. These differences are thought to be associated with variations in the architectural schemes of the two metallizations. The absence of a conducting electromigrationresistant overlayer in Cu technology, and the possibility of liner rupture at stressed vias lead to significant differences in tree reliabilities in Cu compared to Al.


1982 ◽  
Vol 10 (1) ◽  
pp. 37-54 ◽  
Author(s):  
M. Kumar ◽  
C. W. Bert

Abstract Unidirectional cord-rubber specimens in the form of tensile coupons and sandwich beams were used. Using specimens with the cords oriented at 0°, 45°, and 90° to the loading direction and appropriate data reduction, we were able to obtain complete characterization for the in-plane stress-strain response of single-ply, unidirectional cord-rubber composites. All strains were measured by means of liquid mercury strain gages, for which the nonlinear strain response characteristic was obtained by calibration. Stress-strain data were obtained for the cases of both cord tension and cord compression. Materials investigated were aramid-rubber, polyester-rubber, and steel-rubber.


AIAA Journal ◽  
2002 ◽  
Vol 40 ◽  
pp. 16-25
Author(s):  
J. P. Wojno ◽  
T. J. Mueller ◽  
W. K. Blake

Sign in / Sign up

Export Citation Format

Share Document