Absolute radiometric calibration of the RapidEye multispectral imager using the reflectance-based vicarious calibration method

2011 ◽  
Vol 5 (1) ◽  
pp. 053544 ◽  
Author(s):  
Denis Naughton
Sensors ◽  
2020 ◽  
Vol 21 (1) ◽  
pp. 139
Author(s):  
Shengli Chen ◽  
Xiaobing Zheng ◽  
Xin Li ◽  
Wei Wei ◽  
Shenda Du ◽  
...  

To calibrate the low signal response of the ocean color (OC) bands and test the stability of the Fengyun-3D (FY-3D)/Medium Resolution Spectral Imager II (MERSI-II), an absolute radiometric calibration field test of FY-3D/MERSI-II at the Lake Qinghai Radiometric Calibration Site (RCS) was carried out in August 2018. The lake surface and atmospheric parameters were mainly measured by advanced observation instruments, and the MODerate spectral resolution atmospheric TRANsmittance algorithm and computer model (MODTRAN4.0) was used to simulate the multiple scattering radiance value at the altitude of the sensor. The results showed that the relative deviations between bands 9 and 12 are within 5.0%, while the relative deviations of bands 8, and 13 are 17.1%, and 12.0%, respectively. The precision of the calibration method was verified by calibrating the Aqua/Moderate-resolution Imaging Spectroradiometer (MODIS) and National Polar-orbiting Partnership (NPP)/Visible Infrared Imaging Radiometer (VIIRS), and the deviation of the calibration results was evaluated with the results of the Dunhuang RCS calibration and lunar calibration. The results showed that the relative deviations of NPP/VIIRS were within 7.0%, and the relative deviations of Aqua/MODIS were within 4.1% from 400 nm to 600 nm. The comparisons of three on-orbit calibration methods indicated that band 8 exhibited a large attenuation after launch and the calibration results had good consistency at the other bands except for band 13. The uncertainty value of the whole calibration system was approximately 6.3%, and the uncertainty brought by the field surface measurement reached 5.4%, which might be the main reason for the relatively large deviation of band 13. This study verifies the feasibility of the vicarious calibration method at the Lake Qinghai RCS and provides the basis and reference for the subsequent on-orbit calibration of FY-3D/MERSI-II.


2021 ◽  
Vol 13 (7) ◽  
pp. 1347
Author(s):  
Yepei Chen ◽  
Kaimin Sun ◽  
Wenzhuo Li ◽  
Xiuqing Hu ◽  
Pengfei Li ◽  
...  

Vicarious calibration, as one on-orbit calibration method, is a supplement to onboard calibration of sensors. The application of vicarious calibration, however, is greatly limited due to the time- and effort-consuming field measurements of atmosphere and surface. Fortunately, the Radiometric Calibration Network (RadCalNet) provides automated in situ data at multiple sites, thus increasing the opportunities to achieve ongoing ground-reference calibration of in-orbit instruments. The MEdium Resolution Spectrum Imager-II (MERSI-II) onboard FengYun-3D (FY) has the temporal, spectral, spatial, and radiometric capacity for image capture at a level on par with other sensors used worldwide, such as the Moderate Resolution Imaging Spectroradiometer (MODIS). Its on-orbit radiometric performance, however, is assessed in a limited manner. In this study, the reflectance-based vicarious calibration method was employed to calibrate the MERSI-II sensor using ground measurements from RadCalNet at the Railroad Valley Playa site. The calibration of the MERSI-II sensor with large view angles presents difficulties due to the uncertainties introduced by surface bidirectional reflectance distribution function (BRDF) effects. Thus, we performed BRDF correction to harmonize the sensor and ground measurements to consistent observation geometries, before the in-situ measurements were taken as inputs for the 6SV radiative transfer model to predict at-sensor radiance. The calibration results were comprehensively validated with ground data and MODIS benchmark datasets. The results show that accounting for BRDF correction could improve the accuracy of vicarious calibration and ensure inter-consistency between different sensors. An analysis of the vicarious calibration of FY-3D MERSI-II yielded uncertainties of <5% for solar reflective bands, which meets the radiometric accuracy requirements typical for land-monitoring space missions. The proposed approach is also applicable to the calibration of other large footprint sensors.


2016 ◽  
Vol 33 (6) ◽  
pp. 1123-1134 ◽  
Author(s):  
Shuo Ma ◽  
Wei Yan ◽  
Yunxian Huang ◽  
Jun Jiang ◽  
Shensen Hu ◽  
...  

AbstractMany quantitative uses of the nighttime imagery provided by low-light sensors, such as the day–night band (DNB) on board the Suomi–National Polar-Orbiting Partnership (SNPP), have emerged recently. Owing to the low nighttime radiance, low-light calibration at night must be investigated in detail. Traditional vicarious calibration methods are based on some targets with nearly invariant surface properties under lunar illumination. However, the relatively stable light emissions may also be used to realize the radiometric calibration under low light. This paper presents a low-light calibration method based on bridge lights, and Visible Infrared Imaging Radiometer Suite (VIIRS) DNB data are used to assess the proposed method. A comparison of DNB high-gain-stage (HGS) radiances over a 2-yr period from August 2012 to July 2014 demonstrates that the predictions are consistent with the observations, and the agreement between the predictions and the observations is on the order of −2.9% with an uncertainty of 9.3% (1σ) for the Hangzhou Bay Bridge and −3.9% with an uncertainty of 7.2% (1σ) for the Donghai Bridge. Such a calibration method based on stable light emissions has a wide application prospect for the calibration of low-light sensors at night.


Author(s):  
A. Brook ◽  
E. Ben Dor

A novel approach for radiometric calibration and atmospheric correction of airborne hyperspectral (HRS) data, termed supervised vicarious calibration (SVC) was proposed by Brook and Ben-Dor in 2010. The present study was aimed at validating this SVC approach by simultaneously using several different airborne HSR sensors that acquired HSR data over several selected sites at the same time. The general goal of this study was to apply a cross-calibration approach to examine the capability and stability of the SVC method and to examine its validity. This paper reports the result of the multi sensors campaign took place over Salon de Provenance, France on behalf of the ValCalHyp project took place in 2011. The SVC method enabled the rectification of the radiometric drift of each sensor and improves their performance significantly. The flight direction of the SVC targets was found to be a critical issue for such correction and recommendations have been set for future utilization of this novel method. The results of the SVC method were examined by comparing ground-truth spectra of several selected validation targets with the image spectra as well as by comparing the classified water quality images generated from all sensors over selected water bodies.


2013 ◽  
Vol 6 (2) ◽  
pp. 3013-3057
Author(s):  
B. Torres ◽  
C. Toledano ◽  
A. Berjón ◽  
D. Fuertes ◽  
V. Molina ◽  
...  

Abstract. Sensitivity studies indicate that among the different error sources of ground-based sky radiometer observations, the pointing error has an important role in the correct retrieving of aerosol properties, being specially critical for the characterization of desert dust aerosol. The present work analyzes the first results of two new measurements, cross and matrix, specifically designed for an evaluation of the pointing error in the standard instrument of the Aerosol Robotic Network, the Cimel CE-318 sun-photometer. The first part of the analysis contains a preliminary study whose results conclude on the need of a sun movement correction for the correct evaluation of the pointing error from both new measurements. Once this correction is applied, both measurements show an equivalent behavior with differences under 0.01° in the evaluation of the pointing error. The second part of the analysis includes the incorporation of the cross scenario in the AERONET routine measurement protocol in order to monitor the pointing error in field instruments. Using the data collected for more than a year, the pointing error is evaluated on 7 sun-photometers belonging to AERONET-Europe. The pointing error values registered are generally smaller than 0.01° though in some instruments values up to 0.03° have been observed. Moreover, the pointing error evaluation has shown that this measure can be used to detect mechanical problems in the robots or dirtiness in the quadrant detector due to the stable behavior of the values against time and solar zenith angle. At the same time, the matrix scenario can be used to derive the value of the field of view. The methodology implemented and the characterization of five sun-photometers is presented in the last part of the study. To validate the method, a comparison with field of view values obtained from the vicarious calibration method was developed. The differences between both techniques are under 3%.


2019 ◽  
Vol 39 (2) ◽  
pp. 0212003
Author(s):  
刘加庆 Liu Jiaqing ◽  
韩顺利 Han Shunli ◽  
孟鑫 Meng Xin ◽  
胡德信 Hu Dexin

2017 ◽  
Vol 37 (8) ◽  
pp. 0801003 ◽  
Author(s):  
吕佳彦 Lü Jiayan ◽  
何明元 He Mingyuan ◽  
陈 林 Chen Lin ◽  
胡秀清 Hu Xiuqing ◽  
李 新 Li Xin

2018 ◽  
Vol 10 (9) ◽  
pp. 1336 ◽  
Author(s):  
Ling Wang ◽  
Xiuqing Hu ◽  
Lin Chen ◽  
Lingli He

The FengYun-3 (FY-3) Visible Infrared Radiometer (VIRR), along with its predecessor, the Multispectral Visible Infrared Scanning Radiometer (MVISR), onboard the FY-1C and FY-1D, has collected continuous daily global observations for 18 years. Achieving accurate and consistent calibration for VIRR reflective solar bands (RSBs) has been challenging, as there is no onboard calibrator and the frequency of in situ vicarious calibration is limited. In this study, a new set of reflectance calibration coefficients were derived for RSBs of the FY-3A, FY-3B, and FY-3C VIRRs using a multisite (MST) calibration method. This method is an extension of a previous MST calibration method, which relies on radiative transfer modeling over the multiple stable earth sites, and no synchronous in situ measurements are needed; hence, it can be used to update the VIRR calibration on a daily basis. The on-orbit radiometric changes of the VIRR onboard the FY-3 series were assessed based on analyses of new sets of calibration slopes. Then, all recalibrated VIRR reflectance data over Libya 4, the most frequently used stable Earth site, were compared with those provided from the Level 1B (L1B) product. Additional validation was performed by comparing the recalibrated VIRR data with those derived from radiative transfer simulations using measurements from automatic calibration instruments in Dunhuang. The results indicate that the radiometric response changes of the VIRRs onboard FY-3A and FY-3B were larger than those of FY-3C VIRR and were wavelength dependent. The current approach can provide consistent VIRR reflectances across different FY-3 satellite platforms. After recalibration, differences in top-of-atmosphere (TOA) reflectance data across different VIRRs during the whole lifetime decreased from 5–10% to less than 3%. The comparison with the automatic calibration method indicates that MST calibration shows good accuracy and lower temporal oscillations.


Sign in / Sign up

Export Citation Format

Share Document